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Clinical Significance 

Artificial intelligence increases learning capacity and provides decision support system at scales that are 

transforming the future of healthcare.  

Artificial intelligence has been implemented in disease diagnosis and prognosis, treatment optimization 

and outcome prediction, drug development and public health.  

Technological advances require collecting and sharing the massive amount of data and thus generate 

concern about privacy.  

 
 
 

Abstract 

Life sciences researchers using Artificial Intelligence are under pressure to innovate faster than 

ever. Large, multilevel, and integrated datasets offer the promise of unlocking novel insights and 

accelerating breakthroughs. Although more data are available than ever, only a fraction is being 
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curated, integrated, understood, and analyzed. Artificial Intelligence focuses on how computers 

learn from data and mimic human thought processes. Artificial Intelligence increases learning 

capacity and provides decision support system at scales that are transforming the future of 

healthcare. This article is a review of machine learning applications in healthcare with a focus on 

clinical, translational, and public health applications with an overview of the important role of 

privacy, data-sharing, and genetic information.  

Introduction 

Machine learning, a popular subdiscipline of Artificial Intelligence, utilizes large datasets and 

identifies interaction patterns among variables. These techniques can discover previously 

unknown associations, generate novel hypotheses and drive researchers and resources towards 

most fruitful directions.
1
 Machine learning can be applied in various fields, including financial, 

automatic driving, smart home, etc. In medicine, machine learning is widely used to build 

automated clinical decision systems.  

Most machine learning approaches fall into two main categories: supervised and unsupervised 

methods. Supervised methods are great for classification and regression. Recent examples 

include: detection of a lung nodule from a chest x-ray;
2
 risk estimation models of anticoagulation 

therapy;
3
 implantation of automated defibrillators in cardiomyopathy;

4
 use in classification of 

stroke and stroke mimic;
5
 modeling of CD4+ T cell heterogeneity;

6
 outcome prediction in 

infectious diseases;
7
 detection of arrhythmia in electrocardiogram;

8
 and design and development 

of in silico clinical trial 
9
 among others.  

Unsupervised learning does not require labeled data. It aims to identify hidden patterns present in 

the data and is often used in data exploration and novel hypotheses generation.
2
 In three separate 

studies in heart failure with preserved ejection fraction among patients who had a heterogeneous 

condition with no proven therapies,
10

 researchers used unsupervised learning 
2
 to revisit failed 

clinical trial such as treatment with spironolactone,
11

 enalapril,
12

 and sildenafil
13

 versus placebo 

to identify a subclass of patients who might benefit from specific therapies, without human 

intervention.  

There are other algorithms, such as reinforcement learning, which can be viewed as a 

combination of supervised and unsupervised learning to maximize the accuracy using trial and 

error.
14 (table 1).  

Deep learning is a subset of machine learning which mimics the operation of the human brain 

using multiple layers of artificial neuronal networks to generate automated predictions from 

training datasets. Models based on deep learning strategy tend to have multiple parameters and 

layers; thus, model over-fitting could lead to poor predictive performance. Increasing the training 

sample size, decreasing the number of hidden layers, and ensuring the data is well-balanced can 

help prevent overfitting. Overall, deep learning is compelling in image recognition
15

 as well as  

in modeling disease onset
16

 using temporal relations among events. A deep neural network was 

trained on more than 37,000 head computed tomography scans for intracranial hemorrhage 

and subsequently evaluated on 9,500 unseen cases, reducing time to diagnosis of new 

outpatient intracranial hemorrhage by 96% with an accuracy of 84%.
17
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Cognitive computing as a subset of artificial intelligence involves self-learning systems using 

pattern recognition, and natural language processing for semi, or unstructured data. Cognitive 

computing mimics the operation of human thought processes, with the goal of creating 

automated computerized models that can solve problems without human assistance. Examples 

include research in computer-brain-interface,
18,19

and commercial products such as the IBM 

Watson.
20 

Although none of these approaches can rapidly and simultaneously consider different disease-

related parameters in a user-independent fashion, they are promising venues and are changing the 

way medicine is practiced. Healthcare providers should be ready for the upcoming Artificial 

Intelligence age and embrace the added capabilities that would lead to more efficient and 

effective care. In this article, we review the applications and challenges as well as ethical 

consideration and perspectives of machine learning in medicine, translational research, and 

public health (table 2).  

Clinical Application 

Disease prediction and diagnosis: 

Despite the increasing application of artificial intelligence in healthcare, the research mainly 

concentrates around cancer, nervous system, and cardiovascular diseases, because they are the 

leading causes of disability and mortality. However, infectious and chronic diseases (e.g., type 2 

diabetes,
21

 inflammatory bowel disease,
22

 C. difficile infection
9) have also been getting 

considerable attention. Early diagnosis can now be achieved for many conditions by improving 

the extraction of clinical insight and feeding such insight into a well-trained and validated 

system.
23

 For instance, the United States Food and Drug Administration (FDA) permitted 

applying of diagnosis software designed to detect wrist fractures in adult patients.
24

 In another 

study on 1,634 images of cancerous and healthy lung tissue, the algorithm identified healthy 

cases and distinguished, as accurately as three pathologists, between two common types of lung 

cancer.
25 In the United States, more than 6% of adult populations are affected by depression. 

Predicting major depressive disorder was 74% accurate by image heatmap pattern recognition.
26

 

Several studies are looking at the potential of artificial intelligence in timely and precise disease 

diagnosis. Supervised methods are effective tools at capturing nonlinear relationships for 

complex and multifactorial disease classification. In a 260 patients cohort study, Abedi V. et al
27 

found that the model can better diagnose acute cerebral ischemia than trained emergency medical 

respondents. Although noisy data and experimental limitations reduce the clinical utility of the 

models, deep learning methods can address these limitations by reducing the dimensionality of 

the data through layered auto-encoding analyses. Examples include: analysis of more than 1,400 

images from 308 histopathology region of skin to detect basal cell carcinoma and differentiate 

malignant from benign lesions, achieving a diagnostic accuracy of >90% compared with 

experts;
28 or examination of more than 41,000 digital screening breast mammographic for 

identifying dense or non-dense breast tissue, where 94% of the 10,763 deep learning assessments 

were accepted  by the interpreting radiologist.
29

 

Treatment effectiveness and outcome prediction: 
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Treatment effectiveness and outcome prediction are also important areas with the potential 

clinical implication in disease management strategies and personalized care plans. A decade ago 

only molecular and clinical information was exploited to predict cancer outcomes. With the 

development of high-throughput technologies, including genomic, proteomic, and imaging 

technologies, new types of input parameters have been collected and used for prediction. With a 

large sample size and integrated multi-modal data types, including histological or pathological 

assessments,
30

 these methods could considerably (15-25%) improve the accuracy of cancer 

susceptibility, outcome prediction, and prognosis.
31

 

Electronic health records (EHRs) are effective tools for documenting and sharing healthcare 

information. Integrating machine learning-based modeling designed specifically for 

administrative datasets can facilitate the detection of potential complications, improve health 

care resource utilization, and outcome at a personalized level.
32,33 

Utilization of machine learning 

applied to EHR data has been shown to predict outcome in sepsis patients.
34

  Large scale 

machine learning-based mortality study in more than 170,000 patients with 331,317 

echocardiography by Manar Smad et al. 
35

 achieved 96% accuracy to predict patients survival 

based on echocardiography combined with EHR data. In terms of algorithm improvement 

Stephen W. Smith et al.
36

 developed a deep neural network model for 12-lead ECG analysis 

compared to the conventional algorithm in emergency department ECGs, their result showed an 

accuracy of 92% for finding a major abnormality.  

Artificial Intelligence analytics can use in chronic disease management that are characterized by 

multi-organ involvement, acute variable events, and long illness progression latencies. For 

instance, retinopathy can be predicted using machine learning. Training two validation dataset 

using deep learning to detect and grade diabetic retinopathy and macular edema achieved a high 

specificity and sensitivity for detecting moderately severe retinopathy and macular edema after 

each image was graded by ophthalmologists between three and seven times.
37

 

To improve care in congestive heart failure, one study used supervised machine learning on 46 

clinical variables from 397 patients with heart failure with preserved ejection fraction. 

Phenotypic heatmap predicted patient survival more accurately than commonly employed risk 

assessment tools.
2
 

One of the goals of precision medicine in cancer is the accurate prediction of optimal drug 

therapies from the genomic data of individual patient tumors.
38 In one study researchers present 

an open-access algorithm for the predictive response of cancers to seven common 

chemotherapeutic medications.
39

 Precision medicine success depends on algorithm ability to 

translate large compendia of -omics data into clinically actionable predictions. For example, 

Costello J. C. et al.
40

  analyzed 44 drug sensitivity prediction algorithms on 53 breast cancer cell 

lines with available genomic information to fulfill dose-response values of growth inhibition for 

each cell line exposed to 28 therapeutic compounds. 

Translation Application 

Drug discovery and repurposing: 
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About 25% of all discovered drugs were the result of a chance when different domains were 

brought together accidentally.
41

 Targeted drug discovery is preferred in pharmaceuticals due to 

the explicit mechanism, higher success rate, and lower cost when compared to traditional blind 

screening. Machine learning is now utilized in the drug discovery process due to the followings; 

1) high costs of drug development; 2) increasing availability of three-dimensional structural 

information that can guide the characterization of drug targets, and 3) extremely low success 

rates in clinical trials.
42

 Machine learning can be used as a bridge to achieve cross-domain 

linkage. It can identify a newly approved drug by recognizing contextual clues like a discussion 

of its indication or side effects.
20 

Despite these novel approaches in drug discovery, there are important challenges, including data 

access and the fact that in general, different data sets are stored in a variety of repositories. 

Furthermore, raw data from clinical trials and other pre-clinical studies are typically not 

available. However, overall, artificial intelligence has been successful when applied to available 

sources, including the use of drug information to extract insight about mechanism-of-action by 

applying techniques such as similarity metrics across all diseases to find shared pathways.
20

 

Another example includes the use of natural language processing for identification of hidden or 

novel associations that might be important in the detection of potential drug adverse effects 

based on scientific publications.
43

 

Clinical trial and in silico clinical trials: 

Clinical trial design has its roots in classical experimental design. However, the clinical 

investigators are not able to control various sources of variability. Ethical issues are paramount 

in clinical research. Subject enrollment can become lengthy and costly.
44,45 

Machine learning approach using in silico dataset was introduced to describe the numerical 

methods used in drug development in oncology by modeling biological systems in the setting of 

clinical trial studies and hospital databases, paving the way to predictive, preventive, 

personalized and participatory medicine.
46

 This approach gives the researchers the ability to 

partially replacing animals or humans in a clinical trial and generates virtual patients with 

specific characteristics to enhance the outcome of such studies. These methods are especially 

helpful for pediatric or orphan disease trials and can be applied in pharmacokinetics and 

pharmacodynamics from the preclinical phase to post-marketing.
46, 47

 In a study, a large in silico 

randomized, placebo-controlled Phase III clinical trial study was designed where investigators 

used virtual treatments on synthetic Crohn‘s disease patients. Results showed a positive 

correlation between the initial disease activity score and the drop in the disease activity score but 

with different medications efficacy.
48 The model did not highly score the investigational drug 

GED-0301; this prediction was further validated when the company which was running the 

clinical trial on GED-0301, has stopped the phase III trial after it failed to clear an interim futility 

review.
49

 In silico clinical trials can have considerable potentials in design and discovery phases 

of biomedical product, biomarker identification, dosing optimization, or the duration of the 

proposed intervention.
50

 

Public Health Relevance 

Epidemic outbreak prediction: 
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The infectious disease distribution pattern between population groups with known probabilities 

are based on prior knowledge of ecological and biological features of the environment. Early 

prediction of the epidemic (such as peak and duration of infection) is possible if model 

parameters are partially known.
51

 Potential outbreak areas for filoviruses were predicted in West, 

Southwest and Central parts of Uganda which is related to bat distribution and previous 

outbreaks areas.
52

 In another study, Kesorn K. et al.
53

 predicted the morbidity rate of dengue 

hemorrhagic fever in central Thailand by estimating the infection rate in the female Aedes 

aegypti larvae mosquitoes and achieved a prediction accuracy of >95% and 88% in the training 

and test set, respectively. 

Precision Health 

Genetic and biomedical studies have continued investigation efforts with the goal of revealing 

connections between genes and human traits or diseases. Regularized logistic regression is an 

important tool for related applications. Many studies rely on large-scale sensitive genotype or 

phenotype data and sharing across institutions is paramount for the success of such studies.
54

 

There are many such examples in recent years. For instance, in a recent case-control study with 

limited sample size, researchers developed an algorithm to integrate personal whole genome 

sequencing and EHR data and used this algorithm to study abdominal aortic aneurysm. They 

assess the effectiveness of modifying personal lifestyles given personal genome baselines, 

demonstrating the model‘s utility as a personal health management model. Such studies have the 

potential to shed lights on the biological architecture of other complex diseases.
55

 In a recent 

review, Torkamani et al., examine the core disciplines that enable high-definition medicine given 

our recent technological advances and high-resolution data.
56

 

Challenges and perspectives 

Machine learning‘s ultimate goal is to develop algorithms that are capable of self-improving with 

experience and continuously learning from new data and insights, to find answers to an array of 

questions. The compelling opportunities in precision medicine offered by complex algorithms 

are accompanied by computational challenges. In 2012 the Obama administration announced 

―Big Data Research and Development Initiative‖ investment to ―help solve some of the Nation's 

most pressing challenges‖.
57

 The achievement of this potential requires novel approaches to 

address at least three technical challenges:
58

 1) volume – scale of data inputs, outputs, and 

attributes; this challenge can be addressed in part by using clusters of CPUs, data sharing system 

or cloud and deep learning methods; 2) variety – different formats of data (image, video, and 

text); this challenge can be partially addressed by using novel deep learning methods to 

integrated data from various sources; and, 3) velocity – speed of streaming data; to address this 

challenge, online learning approaches can be developed.  

The ethical challenges presented by data science have also been an area of debate. These 

challenges can be mapped within the conceptual space and described by three branches of 

research: the ethics of data and privacy, the ethics and morality of algorithms, and the ethics and 

values of practices.
59

 Among those, privacy has been the center of attention. Privacy is defined as 

a fundamental human right in the Universal Declaration of Human Rights at the 1948 United 

Nations General Assembly. Machine learning plays a key role in the development of precision 
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medicine, whereby treatment is customized to the clinical or genetic risk factors of the patient. 

These advances require collecting and sharing the massive amount of data and thus generate 

concern about privacy.
60

  

At the same time, healthcare institutions need to communicate with the public and collaborate 

with scientific communities, as well as government agencies.
61

 In this situation, a privacy-

preserving framework is necessary and should be applied to a large range of domains where the 

privacy and confidentiality of study participants and institutions is of concern.
62

 As standard 

practice, many institutions collaborate and use the de-identification process to share clinical data; 

or perform a meta-analysis, and each contributing site performs analysis in-house. These 

processes reduce the scope of clinical data sharing. For example, the DNAnexus clinical trial 

solution service powers the FDA‘s platform for advancing regulatory standards.
63

 St. Jude Cloud 

is a data-sharing resource for the global research community.
64

 eMERGE is a national network 

organized and funded by the National Human Genome Research Institute (NHGRI) that 

combines DNA biorepositories with electronic medical record (EMR) systems for large-scale, 

high-throughput genetic research in support of implementing genomic medicine.
65

 In Europe, the 

UK Biobank is a national and international health resource with unparalleled research 

opportunities, open to all bona fide health researchers.
66

 

The most important issue when developing machine learning in a clinical setting is the issue of 

trust when both clinicians and patients accept the recommendations provided by the system.
67

 

The data is noisy, complex, high-dimensional with thousands of variables, and biased for the 

catchment area of the originating hospital systems where the model was trained. Furthermore, 

missing data is not at random. Missingness can be due to incompleteness, inconsistency, or 

inaccuracy.
68,69

 Imputation, predicting missing values, also has its unique challenges. 

Standardized techniques such as the MICE algorithm
70

 or novel imputation methods
71

 have been 

proposed. Other challenges in mining the EHR data includes: 1) different protocols and changes 

are introduced at various time period, without documentation for the research team; and 2) policy 

changes and reimbursement rules are introduced that may affect how patients seek care and how 

the treatment is re-designed based on their needs and their insurance coverage. Therefore, to 

develop models using EHR, the researchers must work closely with care providers and others 

within the healthcare system to increase the predictive power of the modeling-enabled 

discoveries.     

Other limitations are lack of interoperability across technology platforms over time and massive 

expansion of structured and unstructured data elements. Natural language processing can be used 

to process and contextualizes different medical words and expressions.72 However; robust 

infrastructures have to be in place to be able to handle a large number of clinical notes. For 

instance, it is possible to use robust infrastructure to process millions of notes and identify 

patients who are in need of a follow-up appointment for preventive care in hospital settings.
73  

 

Today‘s machine learning approaches are near to real-world conditions. Due to the rapid 

technological advancements, tasks previously limited to humans will be taken on by 

algorithms.
74

 Machine learning‘s ability to transform data into insight will affect the field of 

medicine, displacing much of the work of radiologists and anatomical pathologists. However, 

clinical medicine has always required doctors to handle huge amounts of data, from history and 
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physical exam to laboratory and imaging studies and, newly genetic data. The ability to manage 

this complexity has always set good doctors apart.
75
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Table1. Three main machine learning strategies, their characteristics, scope, and limitations 

ML types Algorithms Description Characteristics Limitation 
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Labeled dataset.  
System trained with human 

feedback  

Applications include Classification, 

Regression, and Prediction; ideal for 

modeling disease prognosis or 

treatment outcome. Modeling 

algorithms include Artificial Neural 

Network (ANN), Support Vector 

Machine (SVM), Random Forest (RF) 

Requires a large 

amount of labeled 

data for training; need 

validation in an 

independent cohort. 

U
n
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rv
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d
 

Le
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g 

Non-labeled data by humans Applications include mainly pattern 

recognition; ideal for modeling disease 

mechanisms, identifying hidden 

patterns in genotype or phenotype 

data. Modeling algorithms include 

various clustering methods 

Needs validation in 

several independent 

cohorts  

R
e

in
fo

rc
e

m
e

n
t 

Le
ar

n
in

g Hybrid approach; The goal is 

to maximize accuracy by trial 

and error; especially useful in 

a complex environment 

Applications include chemistry, 

robotics, games, resource management 

in computer clusters, personalized 

recommendations 

Memory intensive 

 

 

Table 2. Selected areas in medicine where machine learning has high potentials and implications 

Field Application 

Clinical Disease prediction and diagnosis 

Treatment effectiveness and 

outcome prediction 

Translation Drug discovery and repurposing  

(In Silico) Clinical trial 

Public health Epidemic outbreak prediction 

Precision health  

 


