

Canadian Journal of Cardiology 33 (2017) 557-576

Guidelines

Hypertension Canada's 2017 Guidelines for Diagnosis, Risk Assessment, Prevention, and Treatment of Hypertension in Adults

Alexander A. Leung, MD, MPH,^a Stella S. Daskalopoulou, MD, PhD,^b Kaberi Dasgupta, MD, MSc,^b Kerry McBrien, MD, MPH,^c Sonia Butalia, BSc, MD,^d Kelly B. Zarnke, MD, MSc,^e Kara Nerenberg, MD, MSc,^f Kevin C. Harris, MD, MHSc,^g Meranda Nakhla, MD, MSc,^h Lyne Cloutier, RN, PhD,ⁱ Mark Gelfer, MD,^j Maxime Lamarre-Cliche, MD,^k Alain Milot, MD, MSc, MD,¹ Peter Bolli, MD,^m Guy Tremblay, MD,ⁿ Donna McLean, RN, NP, PhD,^o Sheldon W. Tobe, MD, MSc(HPTE),^p Marcel Ruzicka, MD, PhD,^q Kevin D. Burns, MD,^q Michel Vallée, MD, PhD,^r G.V. Ramesh Prasad, MBBS, MSc,^P Steven E. Gryn, MD,^s Ross D. Feldman, MD,^t Peter Selby, MBBS, MHSc,^u Andrew Pipe, CM, MD,^v Ernesto L. Schiffrin, MD, PhD,^w Philip A. McFarlane, MD, PhD,^x Paul Oh, MD,^y Robert A. Hegele, MD,^z Milan Khara, MBChB,^{aa} Thomas W. Wilson, MD,^{bb} S. Brian Penner, MD,^{cc} Ellen Burgess, MD,^{dd} Praveena Sivapalan, MD,^{bb} Robert J. Herman, MD,^e Simon L. Bacon, PhD,^{ee} Simon W. Rabkin, MD,^{ff} Richard E. Gilbert, MD, PhD,^{gg} Tavis S. Campbell, PhD,^{hh} Steven Grover, MD, MPA,ⁱⁱ George Honos, MD,^{jj} Patrice Lindsay, RN, PhD,^{kk} Michael D. Hill, MD, MSc,¹¹ Shelagh B. Coutts, MD,^{mm} Gord Gubitz, MD,ⁿⁿ Norman R.C. Campbell, MD,^{oo} Gordon W. Moe, MD, MSc,^{pp} Jonathan G. Howlett, MD,^{qq} Jean-Martin Boulanger, MD,^{rr} Ally Prebtani, MD,^{ss} Gregory Kline, MD,^{dd} Lawrence A. Leiter, MD,^{tt} Charlotte Jones, MD, PhD,^{uu} Anne-Marie Côté, MD, MHSc,^{vv} Vincent Woo, MD,^{ww} Janusz Kaczorowski, PhD,^{xx} Luc Trudeau, MD,^{yy} Ross T. Tsuyuki, BSc (Pharm), PharmD, MSc,^{zz} Swapnil Hiremath, MD, MPH,^{aaa} Denis Drouin, MD, bbb Kim L. Lavoie, PhD, ccc Pavel Hamet, MD, PhD, ddd Jean C. Grégoire, MD, eee Richard Lewanczuk, MD, PhD,º George K. Dresser, MD, PhD,ff Mukul Sharma, MD, MSc,^{ggg} Debra Reid, PhD, DtP,^{hhh} Scott A. Lear, PhD,ⁱⁱⁱ Gregory Moullec, PhD,^{jjj} Milan Gupta, MD,^{kkk} Laura A. Magee, MD, MSc,^{lll} Alexander G. Logan, MD,^p Janis Dionne, MD,^g Anne Fournier, MD,^{mmm}

Received for publication February 21, 2017. Accepted March 5, 2017.

Corresponding author: Dr Alexander A. Leung, Division of Endocrinology and Metabolism, Departments of Medicine and Community Health

Sciences, University of Calgary, 1820 Richmond Rd SW, Calgary, Alberta T2T 5C7, Canada. Tel.: +1-403-955-8358; fax: +1-403-955-8249. E-mail: aacleung@ucalgary.ca

See page 573 for disclosure information.

Geneviève Benoit, MD,ⁿⁿⁿ Janusz Feber, MD,⁰⁰⁰ Luc Poirier, BPharm, MSc,^{ppp} Raj S. Padwal, MD, MSc,^{qqq} and Doreen M. Rabi, MD, MSc;^{rrr} for Hypertension Canada

^a Division of Endocrinology and Metabolism, Department of Medicine, University of Calgary, Calgary, Alberta, Canada; ^b Divisions of General Internal Medicine, Clinical Epidemiology and Endocrinology, Department of Medicine, McGill University, McGill University Health Centre, Montreal, Quebec, Canada; 'Departments of Family Medicine and Community Health Sciences, Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;^d Departments of Medicine and Community Health Sciences, Libin Cardiovascular Institute of Alberta, O'Brien Institute of Public Health, University of Calgary, Calgary, Alberta, Canada; ^e Division of General Internal Medicine, University of Calgary, Calgary, Alberta, Canada; ^f Department of Medicine and Department of Obstetrics and Gynecology, University of Calgary, Calgary, Alberta, Canada; ^gDepartment of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; ^hMontreal Children's Hospital, McGill University, Montreal, Quebec, Canada; ¹Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada; ¹Department of Family Medicine, University of British Columbia, Copeman Healthcare Centre, Vancouver, British Columbia, Canada; ^kInstitut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Quebec, Canada; ¹Department of Medicine, Université Laval, Québec, Quebec, Canada; ^mMcMaster University, Hamilton, Ontario, Canada; ⁿ CHU-Québec-Hopital St Sacrement, Québec, Quebec, Canada; ^o University of Alberta, Edmonton, Alberta, Canada; ^p University of Toronto, Toronto, Ontario, Canada; ⁹ Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; ^r Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Quebec, Canada; ⁵ Department of Medicine, Division of Clinical Pharmacology, Western University, London, Ontario, Canada; ^t Discipline of Medicine, Memorial University of Newfoundland, St John's, Newfoundland and Labrador; ^u Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; "University of Ottawa Heart Institute, Ottawa, Ontario, Canada; "Department of Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; ^{*} Division of Nephrology, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; ^y University Health Network, University of Toronto, Toronto, Ontario, Canada; ^z Departments of Medicine (Division of Endocrinology) and Biochemistry, Western University, London, Ontario, Canada; and Vancouver Coastal Health Addiction Services, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; ^{bb} Department of Medicine, University of Saskatchewan, Saskatchewan, Canada; ^{cc} Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; ^{dd} Department of Medicine, University of Calgary, Calgary, Alberta, Canada; ^{ec} Department of Exercise Science, Concordia University, and Montreal Behavioural Medicine Centre, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada; ^{ff} Vancouver Hospital, University of British Columbia, Vancouver, British Columbia, Canada; ^{6g} University of Toronto, Division of Endocrinology, St Michael's Hospital, Toronto, Ontario, Canada; ^{bb} Department of Psychology, University of Calgary, Calgary, Alberta, Canada; ⁱⁱ Division of Clinical Epidemiology, Montreal General Hospital, Montreal, Quebec, Canada; ⁱⁱⁱ University of Montreal, Montreal, Quebec, Canada; ^{kk} Stroke, Heart and Stroke Foundation of Canada, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada; "Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; nor Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; an Division of Neurology, Halifax Infirmary, Dalhousie University, Halifax, Nova Scotia, Canada; on Medicine, Community Health Sciences, Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada; P St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; ⁴⁴ Departments of Medicine and Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada; ¹⁷ Charles LeMoyne Hospital Research Centre, Sherbrooke University, Sherbrooke, Quebec, Canada; * McMaster University, Hamilton, Ontario, Canada; "Keenan Research Centre in the Li Ka Shing Knowledge Institute of St Michael's Hospital, and University of Toronto, Toronto, Ontario, Canada; "" University of British Columbia, Southern Medical Program, Kelowna, British Columbia, Canada; ^{wu} Université de Sherbrooke, Sherbrooke, Quebec, Canada; ^{wu} University of Manitoba, Winnipeg, Manitoba, Canada; ^{xx} Université de Montréal and Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada; 19 Division of Internal Médicine, McGill University, Montréal, Quebec, Canada; ²²² Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; ^{and} Faculty of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; ^{bbb} Faculty of Medicine, Université Laval, Québec, Quebec, Canada; ^{ccc} Department of Psychology, University of Quebec at Montreal, Montréal, Quebec, Canada; ^{ddd} Faculté de Médicine, Université de Montréal, Montréal, Quebec, Canada; ^{ccc} Université de Montréal, Institut de cardiologie de Montréal, Montréal, Quebec, Canada;^{fff} Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada;⁸⁸⁸ McMaster University, Hamilton Health Sciences Population Health Research Institute, Hamilton, Ontario, Canada;^{bhb} Centre intégré de santé et de services sociaux (CISSS) de l'Outaouais, Groupes de médecine de famille (GMF) de Wakefield, Wakefield, Quebec, Canada; in Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada,¹⁰ Research & Jamma (Unit), & Walfreds, Walfreds, Public Health School, University of Montréal, Montréal, Quebec, Canada,^{kkk} Master University, Hamilton, Ontario, and Canadian Collaborative Research Network, Brampton, Ontario, Canada; ¹⁰St George's, University of London and the St George's Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom; mmm Service de cardiologie, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada; nnn Centre Hospitalier Universitaire Sainte-Justine, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada; 000 Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada; PPP Centre Hospitalier Universitaire de Québec et Faculté de Pharmacie, Université Laval, Québec, Quebec, Canada; 999 Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; "" Departments of Medicine, Community Health and Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada

ABSTRACT

Hypertension Canada provides annually updated, evidence-based guidelines for the diagnosis, assessment, prevention, and treatment of hypertension. This year, we introduce 10 new guidelines. Three previous guidelines have been revised and 5 have been removed. Previous age and frailty distinctions have been removed as considerations for when to initiate antihypertensive therapy. In the presence of macrovascular target organ damage, or in those with independent cardiovascular risk factors, antihypertensive therapy should be

RÉSUMÉ

Hypertension Canada présente annuellement une mise à jour de ses lignes directrices fondées sur des données probantes en vue du diagnostic, de l'évaluation, de la prévention et du traitement de l'hypertension. Cette année, nous présentons 10 nouvelles lignes directrices. Trois de nos lignes directrices ont été revues et cinq autres ont été éliminées. Nous avons notamment retiré les distinctions relatives à l'âge et à la fragilité du patient dans le cadre de l'évaluation préalable à l'instauration d'un traitement antihypertenseur. En

Hypertension affects nearly a quarter of Canadian adults and represents a major risk factor for cardiovascular morbidity, chronic kidney disease, and death; however, it often remains clinically silent until complications arise.¹⁻³ Worldwide, high blood pressure (BP) affects > 40% of adults older than the age of 25 years, and is the leading global risk factor for death or disability.^{4.5}

With the goal of improving the prevention, detection, assessment, and management of hypertension, Hypertension Canada (formerly the Canadian Hypertension Education Program) has been producing annually-updated, evidencebased guidelines for health care providers since 1999. (The rebranding of Hypertension Canada was in response to feedback and marketing research from primary care considered for all individuals with elevated average systolic nonautomated office blood pressure (non-AOBP) readings > 140 mm Hg. For individuals with diastolic hypertension (with or without systolic hypertension), fixed-dose single-pill combinations are now recommended as an initial treatment option. Preference is given to pills containing an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker in combination with either a calcium channel blocker or diuretic. Whenever a diuretic is selected as monotherapy, longer-acting agents are preferred. In patients with established ischemic heart disease, caution should be exercised in lowering diastolic non-AOBP to < 60 mm Hg, especially in the presence of left ventricular hypertrophy. After a hemorrhagic stroke, in the first 24 hours, systolic non-AOBP lowering to < 140 mm Hg is not recommended. Finally, guidance is now provided for screening, initial diagnosis, assessment, and treatment of renovascular hypertension arising from fibromuscular dysplasia. The specific evidence and rationale underlying each of these guidelines are discussed.

stakeholders.) We present herein updated guidelines for 2017, along with discussion of the supporting evidence. Further details along with supporting references pertaining to established guidelines are available in previous publications,⁶⁻³² and online (guidelines.hypertension.ca). Pediatric-specific guidelines are published separately.

Our guidelines are intended to provide a framework but should not replace clinical judgement. Practitioners are advised to consider patient preferences, values, and clinical factors when determining how to best apply these guidelines at the bedside.

Methods

The Hypertension Canada Guidelines Committee (HCGC) is a multidisciplinary panel of content as well as methodological experts comprised of a Chair, a Central Review Committee with a designated Chair, and 15 subgroups. Each subgroup addresses a distinct content area in hypertension (see Supplemental Appendix S1 for the current membership list). All HCGC members are volunteers.

Systematic literature searches to August 2016 were performed by a librarian from the Cochrane Collaboration in MedLine/PubMed using text words and Medical Subject Headings. Details of search strategies and retrieved articles are available upon request. Randomized controlled trials and systematic reviews of randomized controlled trials were reviewed for treatment guidelines, whereas cross-sectional and cohort studies were reviewed for evidence related to diagnosis and prognosis.

Each subgroup examined the search results pertinent to its content area. Studies that assessed relevant outcomes were selected for further review. Cardiovascular morbidity présence de lésions macrovasculaires aux organes cibles ou de facteurs indépendants de risque cardiovasculaire, un traitement antihypertenseur doit être envisagé chez tous les patients dont la pression systolique moyenne s'elève à \geq 140 mm Hg (mesure de la pression artérielle en clinique [MPAC]). En ce qui a trait aux patients qui présentent une hypertension diastolique (avec ou sans hypertension systolique), on recommande désormais un traitement par une association médicamenteuse à dose fixe présentée en un seul comprimé à titre d'option thérapeutique initiale. Nous privilégions notamment les médicaments associant un inhibiteur de l'enzyme de conversion de l'angiotensine ou un inhibiteur des récepteurs de l'angiotensine à un bloqueur des canaux calciques ou à un diurétique. En cas d'administration d'un diurétique en monothérapie, il convient de privilégier les agents à action prolongée. Chez les patients atteints d'une cardiopathie ischémique avérée, il faut faire preuve de prudence lors d'une baisse de la pression diastolique (MPAC) à < 60 mm Hg, surtout en présence d'une hypertrophie ventriculaire gauche. Au cours des 24 premières heures suivant un accident vasculaire cérébral hémorragique, il n'est pas recommandé d'abaisser a pression systolique (MPAC) à moins de 140 mm Hg. Enfin, nous avons inclus des lignes directrices en vue du dépistage, du diagnostic initial, de l'évaluation et du traitement de l'hypertension rénovasculaire associée à la dysplasie fibromusculaire. La justification et les données probantes pour chacune de nos lignes directrices sont également présentées.

and mortality as well as total mortality outcomes were prioritized for pharmacotherapy studies. For health behaviour guidelines, BP was considered an acceptable surrogate. Similarly, progressive renal impairment was an acceptable surrogate for guidelines relevant to chronic kidney disease. Study characteristics and study quality were assessed using prespecified, standardized algorithms developed by Hypertension Canada for the critical appraisal of randomized controlled trials and observational studies.³³

Guidelines were individually graded according to the supporting evidence. All guidelines, regardless of grading, are believed to have benefits that strongly outweigh risks. In this sense, all of Hypertension Canada's guidelines are 'strong' in nature (ie, the HCGC refrains from making 'weak' guidelines). For pharmacotherapy guidelines, as a general rule, Hypertension Canada considers evidence evaluating specific agents to be generalizable to a 'class effect' unless otherwise stated.

Expert subgroup members were responsible for reviewing annual search results and, if indicated, drafting new guidelines or revising existing guidelines. An independent Central Review Committee consisting of methodological experts with no industry affiliations independently reviewed, graded, and refined proposed guidelines, which were then presented at a consensus conference of the HCGC in Montreal on October 19, 2016.

All guidelines were finalized and submitted electronically to all 81 voting members of the HCGC for approval. Members with potential conflicts of interest recused themselves from voting on specific guidelines (a list of conflicts is available as Supplemental Appendix S2). Guidelines receiving > 70% approval were passed. The Hypertension Canada Guidelines process is in accordance with the Appraisal of Guidelines for **Re**search and Evaluation II (AGREE II) guidelines (guidelines.hypertension.ca/about/overview-process),³⁴ and has been externally reviewed (Supplemental Table S1).

Hypertension Canada's 2017 Guidelines: Diagnosis and Assessment of Hypertension

I. Accurate measurement of BP

Background. There are no changes to these guidelines for 2017.

Guidelines

- 1. Health care professionals who have been specifically trained to measure BP accurately should assess BP in all adult patients at all appropriate visits to determine cardiovascular risk and monitor antihypertensive treatment (Grade D).
- 2. Use of standardized measurement techniques and validated equipment for all methods (automated office BP [AOBP], non-AOBP, home BP monitoring, and ambulatory BP monitoring) is recommended (Grade D; see Supplemental Table S2; and sections III. Home BP Measurement; and IV. Ambulatory BP Measurement). Measurement using electronic (oscillometric) upper arm devices is preferred over auscultation (Grade C). (Unless specified otherwise, electronic [oscillometric] measurement should be used.)
- 3. Four approaches can be used to assess BP:
 - i. AOBP is the preferred method of performing in-office BP measurement (Grade D). When using AOBP (see Supplemental Table S2, section on *Recommended Technique for Automated Office Blood Pressure* [AOBP]), a displayed mean systolic BP (SBP) ≥ 135 mm Hg or diastolic BP (DBP) ≥ 85 mm Hg DBP is high (Grade D).
 - ii. When using non-AOBP, a mean SBP \geq 140 mm Hg or DBP \geq 90 mm Hg is high, and an SBP between 130 and 139 mm Hg and/or a DBP between 85 and 89 mm Hg is high-normal (Grade C).
 - iii. Using ambulatory BP monitoring (see *Guidelines* in section *IV*, *Ambulatory BP Measurement*), patients can be diagnosed as hypertensive if the mean awake SBP is ≥ 135 mm Hg or the DBP is ≥ 85 mm Hg or if the mean 24-hour SBP is ≥ 130 mm Hg or the DBP is ≥ 80 mm Hg (Grade C).
 - iv. Using home BP monitoring (see *Guidelines* in section *III*, *Home BP Measurement*), patients can be diagnosed as hypertensive if the mean SBP is ≥ 135 mm Hg or the DBP is ≥ 85 mm Hg (Grade C). If the office BP measurement is high and the mean home BP is < 135/85 mm Hg, it is advisable to either repeat home monitoring to confirm the home BP is < 135/85 mm Hg or perform 24-hour ambulatory BP monitoring to confirm that the mean 24-hour ambulatory BP monitoring is < 130/80 mm Hg

and the mean awake ambulatory BP monitoring is < 135/85 mm Hg before diagnosing white coat hypertension (Grade D).

II. Criteria for diagnosis of hypertension and guidelines for follow-up

Background. There are no changes to these guidelines for 2017. A hypertension diagnostic algorithm is shown in Figure 1.

- 1. At the time of initial presentation, patients demonstrating features of a hypertensive urgency or emergency (Supplemental Table S3) should be diagnosed as hypertensive and require immediate management (Grade D). In all other patients, at least 2 more readings should be taken during the same visit. If using AOBP, the BP calculated and displayed by the device should be used. If using non-AOBP measurement, the first reading should be discarded and the latter readings averaged.
- 2. If the visit 1 office BP measurement is high-normal (thresholds outlined in section *I*, *Guideline 3*) annual follow-up is recommended (Grade C).
- 3. If the visit 1 mean AOBP or non-AOBP measurement is high (thresholds outlined in section *I*, *Guideline 3*), a history and physical examination should be performed and, if clinically indicated, diagnostic tests to search for target organ damage (Supplemental Table S4) and associated cardiovascular risk factors (Supplemental Table S5) should be arranged within 2 visits. Exogenous factors that can induce or aggravate hypertension should be assessed and removed if possible (Supplemental Table S6). Visit 2 should be scheduled within 1 month (Grade D).
- 4. If the visit 1 mean AOBP or non-AOBP SBP is \geq 180 mm Hg and/or DBP is \geq 110 mm Hg then hypertension is diagnosed (Grade D).
- If the visit 1 mean AOBP SBP is 135-179 mm Hg and/or DBP is 85-109 mm Hg or the mean non-AOBP SBP is 140-179 mm Hg and/or DBP is 90-109 mm Hg, out-ofoffice BP measurements should be performed before visit 2 (Grade C).
 - i. Ambulatory BP monitoring is the recommended outof-office measurement method (Grade D). Patients can be diagnosed with hypertension according to the thresholds outlined in section *I*, *Guideline 3*.
 - ii. Home BP monitoring is recommended if ambulatory BP monitoring is not tolerated, not readily available, or because of patient preference (Grade D). Patients can be diagnosed with hypertension according to the thresholds outlined in section *I*, *Guideline 3*.
 - iii. If the out-of-office BP average is not elevated, white coat hypertension should be diagnosed and pharmacologic treatment should not be instituted (Grade C).
- 6. If the out-of-office measurement, although preferred, is not performed after visit 1, then patients can be diagnosed as

hypertensive using serial office BP measurement visits if any of the following conditions are met:

- i. At visit 2, mean non-AOBP measurement (averaged across all visits) is \geq 140 mm Hg SBP and/ or \geq 90 mm Hg DBP in patients with macrovascular target organ damage, diabetes mellitus, or chronic kidney disease (glomerular filtration rate < 60 mL/ min/1.73 m²) (Grade D);
- ii. At visit 3, mean non-AOBP measurement (averaged across all visits) is ≥ 160 mm Hg systolic or ≥ 100 mm Hg diastolic;
- iii. At visit 4 or 5, mean non-AOBP measurement (averaged across all visits) is \geq 140 mm Hg SBP or \geq 90 mm Hg DBP.
- 7. Investigations for secondary causes of hypertension should be initiated in patients with suggestive clinical and/or laboratory features (outlined in sections *V*, *VII*, and *VIII*; Grade D).
- 8. If at the last diagnostic visit the patient is not diagnosed as hypertensive and has no evidence of macrovascular target organ damage, the patient's BP should be assessed at yearly intervals (Grade D).
- 9. Hypertensive patients actively modifying their health behaviours should be followed up at 3- to 6-month intervals. Shorter intervals (every 1 or 2 months) are needed for patients with higher BP (Grade D).
- 10. Patients receiving antihypertensive drug treatment should be seen monthly or every 2 months, depending on the level of BP, until readings on 2 consecutive visits are below their target (Grade D). Shorter intervals between visits will be needed for symptomatic patients and for those with severe hypertension, intolerance to antihypertensive drugs, or target organ damage (Grade D). When the target BP has been reached, patients should be seen at 3- to 6-month intervals (Grade D).

III. Home BP measurement

Background. There are no changes to these guidelines for 2017. A suggested protocol for home BP monitoring is presented in Supplemental Table S2.

Guidelines

- 1. Home BP monitoring can be used in the diagnosis of hypertension (Grade C).
- 2. The use of home BP monitoring on a regular basis should be considered for patients with hypertension, particularly those with:
 - i. Diabetes mellitus (Grade D);
 - ii. Chronic kidney disease (Grade C);
 - iii. Suspected nonadherence (Grade D);
 - iv. Demonstrated white coat effect (Grade C);
 - v. BP controlled in the office but not at home (masked hypertension; Grade C).
- 3. When white coat hypertension is suggested according to home BP monitoring, its presence should be confirmed by repeat home BP monitoring (*Guideline 7*, in this section) or

ambulatory BP monitoring before treatment decisions are made (Grade D).

- 4. Patients should be advised to purchase and use only home BP monitoring devices that are appropriate for the individual and have met standards of the Association for the Advancement of Medical Instrumentation, the most recent requirements of the British Hypertension Society protocol, or the International Protocol for validation of automated BP measuring devices. Patients should be encouraged to use devices with data recording capabilities or automatic data transmission to increase the reliability of reported home BP monitoring (Grade D).
- 5. Home SBP values \geq 135 mm Hg or DBP values \geq 85 mm Hg should be considered to be elevated and associated with an increased overall mortality risk (Grade C).
- 6. Health care professionals should ensure that patients who measure their BP at home have adequate training and, if necessary, repeat training in measuring their BP. Patients should be observed to determine that they measure BP correctly and should be given adequate information about interpreting these readings (Grade D).
- 7. Home BP monitoring for assessing white coat hypertension or sustained hypertension should be on the basis of duplicate measures, morning and evening, for an initial 7day period. First-day home BP values should not be considered (Grade D).

IV. Ambulatory BP measurement

Background. There are no changes to these guidelines for 2017. A suggested protocol for ambulatory BP monitoring is presented in Supplemental Table S2.

- 1. Ambulatory BP monitoring can be used in the diagnosis of hypertension (Grade C). Ambulatory BP monitoring should be considered when an office-induced increase in BP is suspected in treated patients with:
 - i. BP that is not below target despite receiving appropriate chronic antihypertensive therapy (Grade C);
 - ii. Symptoms suggestive of hypotension (Grade C);
 - iii. Fluctuating office BP readings (Grade D).
- 2. Ambulatory BP monitoring upper arm devices that have been validated independently using established protocols must be used (see www.dableducational.org) (Grade D).
- 3. Therapy adjustment should be considered in patients with a mean 24-hour ambulatory BP monitoring SBP of \geq 130 mm Hg and/or DBP of \geq 80 mm Hg, or a mean awake SBP of \geq 135 mm Hg and/or DBP of \geq 85 mm Hg (Grade D).
- 4. The magnitude of changes in nocturnal BP should be taken into account in any decision to prescribe or withhold drug therapy on the basis of ambulatory BP monitoring (Grade C) because a decrease in nocturnal BP of

<10% is associated with increased risk of cardiovascular events.

V. Routine and optional laboratory tests for the investigation of patients with hypertension

Background. There are no changes to these guidelines for 2017.

Guidelines

- 1. Routine laboratory tests that should be performed for the investigation of all patients with hypertension include the following:
 - i. Urinalysis (Grade D);
 - ii. Blood chemistry (potassium, sodium, and creatinine; Grade D);
 - iii. Fasting blood glucose and/or glycated hemoglobin (A1c; Grade D);
 - iv. Serum total cholesterol, low-density lipoprotein, highdensity lipoprotein, non-high-density lipoprotein cholesterol, and triglycerides (Grade D); lipids may be drawn fasting or nonfasting (Grade C);
 - v. Standard 12-lead electrocardiography (Grade C).
- 2. Assess urinary albumin excretion in patients with diabetes (Grade D).
- 3. All treated hypertensive patients should be monitored according to the current Diabetes Canada guidelines for the new appearance of diabetes (Grade B).
- 4. During the maintenance phase of hypertension management, tests (including those for electrolytes, creatinine, and fasting lipids) should be repeated with a frequency reflecting the clinical situation (Grade D).

VI. Assessment of overall cardiovascular risk in hypertensive patients

Background. There are no changes to these guidelines for 2017. Examples of risk calculators include www. myhealthcheckup.com and www.score-canada.ca.

Guidelines

- 1. Global cardiovascular risk should be assessed. Multifactorial risk assessment models can be used to predict more accurately an individual's global cardiovascular risk (Grade A) and to use antihypertensive therapy more efficiently (Grade D). In the absence of Canadian data to determine the accuracy of risk calculations, avoid using absolute levels of risk to support treatment decisions (Grade C).
- 2. Consider informing patients of their global risk to improve the effectiveness of risk factor modification (Grade B). Consider also using analogies that describe comparative risk such as "cardiovascular age," "vascular age," or "heart age" to inform patients of their risk status (Grade B).

VII. Assessment for renovascular hypertension

Background. Despite the lack of high-quality evidence, the HCGC deemed it important to provide guidance for the diagnosis of renal FMD. Affecting up to 4% of adults,³ FMD is an idiopathic condition, characterized by segmental, nonatherosclerotic narrowing of small- and medium-sized arteries, which commonly affects renal blood flow.⁴¹ There is a marked female-to-male preponderance of 9:1, more often affecting younger women. 41,42 It is estimated that more than half of individuals with FMD have renal artery stenosis, one-third have cervicocranial involvement, whereas few are affected at other sites.^{39,43,44} Hypertension is the most common manifestation, often requiring multiple drugs.⁴² Headache, tinnitus, dizziness, neck pain, and cervical/abdominal bruits might also be present.⁴² The diagnosis of FMD is on the basis of diagnostic imaging with catheter-based angiography being the 'gold standard.' Noninvasive imaging modalities include captopril renal scan, duplex ultrasound, computed tomographic angiography, and magnetic resonance angiography. Estimates of sensitivity and specificity vary widely and are generally derived from small studies.^{38,40,44-48} On the basis of a consensus of expert opinion, we recommend either computed tomographic angiography or magnetic resonance angiography as the initial diagnostic test. If renal FMD is confirmed, patients should be screened for cervicocephalic and intracranial involvement, because these sites are also commonly affected.⁴² Screening of other vascular sites should be guided by symptoms.

- 1. Patients who present with ≥ 2 of the following clinical clues, suggestive of renovascular hypertension, should be investigated (Grade D):
 - i. Sudden onset or worsening of hypertension and age > 55 or < 30 years;
 - ii. Presence of an abdominal bruit;
 - iii. Hypertension resistant to \geq 3 drugs;
 - iv. Increase in serum creatinine level \geq 30% associated with use of an angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB);
 - v. Other atherosclerotic vascular disease, particularly in patients who smoke or have dyslipidemia;
 - vi. Recurrent pulmonary edema associated with hypertensive surges.
- 2. When available, the following tests are recommended to aid in the usual screening for renal vascular disease: captopril-enhanced radioisotope renal scan, Doppler sonography, magnetic resonance angiography, and computed tomography angiography (for those with normal renal function; Grade B). Captopril-enhanced radioisotope renal scan is not recommended for those with chronic kidney disease (glomerular filtration rate < 60 mL/min/1.73 m²; Grade D).
- 3. Patients with hypertension who present with at least 1 of the following clinical clues should be investigated for

Figure 1. Hypertension diagnostic algorithm. ABPM, ambulatory blood pressure measurement; AOBP, automated office blood pressure; BP, blood pressure. *If AOBP is used, use the mean calculated and displayed by the device. If non-AOBP (see [†]) is used, take at least 3 readings, discard the first, and calculate the mean of the remaining measurements. A history and physical exam should be performed and diagnostic tests ordered. [†]AOBP is performed with the patient unattended in a private area. Non-AOBP is performed using an electronic upper arm device with the provider in the room. [‡]Diagnostic thresholds for AOBP, ABPM, and home BP in patients with diabetes have yet to be established (and might be lower than 13080 mm Hg). [§]Serial office measurements over 3-5 visits can be used if ABPM or home measurement is not available. [∥]For a home BP series, 2 readings are taken each morning and evening for 7 days (28 total). Discard the first day readings and average the last 6 days. [¶]Annual BP measurement is recommended to detect progression to hypertension.

fibromuscular dysplasia (FMD)-related renal artery stenosis (Grade D; **new guideline**):

- i. Age < 30 years, especially in nonobese women;
- ii. Hypertension resistant to ≥ 3 drugs;
- iii. Significant (> 1.5 cm), unexplained asymmetry in kidney sizes;
- iv. Abdominal bruit without apparent atherosclerosis;
- v. FMD in another vascular territory;
- viii. Positive family history for FMD.
- 4. In patients with confirmed renal FMD (Grade D; new guideline):
 - i. Screening for cervicocephalic lesions and intracranial aneurysm is recommended;
 - ii. Screening for FMD in other vascular beds in the presence of suggestive symptoms is recommended.
- 5. The following tests are recommended to screen for renal FMD (both with similar sensitivity and specificity; Grade D; **new guideline**): magnetic resonance angiography and computed tomography angiography.

VIII. Assessment for endocrine hypertension

A. Hyperaldosteronism: screening and diagnosis

Background. There are no changes to these guidelines for 2017.

- 1. Screening for hyperaldosteronism should be considered in hypertensive patients with the following (Grade D):
 - i. Unexplained spontaneous hypokalemia (K⁺ < 3.5 Mmol/L) or marked diuretic-induced hypokalemia (K⁺ < 3.0 Mmol/L);
 - ii. Resistance to treatment with \geq 3 drugs;
 - iii. An incidental adrenal adenoma.
- 2. Screening for hyperaldosteronism should include assessment of plasma aldosterone and plasma renin activity or plasma renin (Supplemental Table S7).
- 3. For patients with suspected hyperaldosteronism (on the basis of the screening test, Supplemental Table S7, *item iii*), a diagnosis of primary aldosteronism should be established by showing inappropriate autonomous hypersecretion of aldosterone using at least 1 of the manoeuvres listed in Supplemental Table S7, *item iv.* When the diagnosis is established, the abnormality should be localized using any of the tests described in Supplemental Table S7, *item v.*
- 4. In patients with primary aldosteronism and a definite adrenal mass who are eligible for surgery, adrenal

venous sampling is recommended to assess for lateralization of aldosterone hypersecretion. Adrenal vein sampling should be performed exclusively by experienced teams working in specialized centres (Grade C).

B. Pheochromocytoma and paraganglioma: screening and diagnosis

Background. There are no changes to these guidelines for 2017.

- 1. If pheochromocytoma or paraganglioma is strongly suspected, the patient should be referred to a specialized hypertension centre, particularly if biochemical screening tests (Supplemental Table S8) have already been found to be positive (Grade D).
- 2. The following patients should be considered for screening for pheochromocytoma or paraganglioma (Grade D):
 - i. Patients with paroxysmal, unexplained, labile, and/ or severe (BP \geq 180/110 mm Hg) sustained hypertension refractory to usual antihypertensive therapy;
 - ii. Patients with hypertension and multiple symptoms suggestive of catecholamine excess (eg, headaches, palpitations, sweating, panic attacks, and pallor);
 - iii. Patients with hypertension triggered by β-blockers, monoamine oxidase inhibitors, micturition, changes in abdominal pressure, surgery, or anaesthesia;
 - iv. Patients with an incidentally discovered adrenal mass;
 - v. Patients with a predisposition to hereditary causes (eg, multiple endocrine neoplasia 2A or 2B, von Recklinghausen neurofibromatosis type 1, or Von Hippel-Lindau disease);
 - vi. For patients with positive biochemical screening tests, localization of pheochromocytomas or paragangliomas should use magnetic resonance imaging (preferable), computed tomography (if magnetic resonance imaging unavailable), and/or iodine I-131 meta-iodobenzylguanidine scintigraphy (Grade C for each modality).

IX. Role of echocardiography

Background. There are no changes to these guidelines for 2017.

Guidelines

- 1. Routine echocardiographic evaluation of all hypertensive patients is not recommended (Grade D).
- 2. An echocardiogram for assessment of left ventricular hypertrophy (LVH) is useful in selected cases to help define the future risk of cardiovascular events (Grade C).
- 3. Echocardiographic assessment of left ventricular mass, as well as of systolic and diastolic left ventricular function is recommended for hypertensive patients suspected to have

left ventricular dysfunction or coronary artery disease (CAD; Grade D).

4. Patients with hypertension and evidence of heart failure should have an objective assessment of left ventricular ejection fraction, either using echocardiogram or nuclear imaging (Grade D).

Hypertension Canada's 2017 Guidelines: Prevention and Treatment of Hypertension

Please note, hereafter, all treatment thresholds and targets refer to non-AOBP measurements performed in-office (see Supplemental Table S2, section on Recommended Technique for Automated Office Blood Pressure [AOBP]), because most of the supporting evidence is derived from studies using this method of BP measurement. Please refer to the section on Hypertension Canada's 2017 Guidelines: Diagnosis and Assessment of Hypertension, section II, Criteria for Diagnosis of Hypertension and Guidelines for Follow-up, for corresponding values using other measurement methods. A summary of the potential factors that should be considered when selecting specific drug therapy for individualized treatment is presented in Table 1.

I. Health behaviour management

Background. There are no changes to these guidelines for 2017.

Guidelines

A. Physical exercise

1. For nonhypertensive individuals (to reduce the possibility of becoming hypertensive) or for hypertensive patients (to reduce their BP), prescribe the accumulation of 30-60 minutes of moderate intensity dynamic exercise (eg, walking, jogging, cycling, or swimming) 4-7 days per week in addition to the routine activities of daily living (Grade D). Higher intensities of exercise are not more effective (Grade D). For nonhypertensive or stage 1 hypertensive individuals, the use of resistance or weight training exercise (such as free weight-lifting, fixed weightlifting, or handgrip exercise) does not adversely influence BP (Grade D).

B. Weight reduction

- 1. Height, weight, and waist circumference should be measured and body mass index calculated for all adults (Grade D).
- 2. Maintenance of a healthy body weight (body mass index 18.5-24.9, and waist circumference < 102cm for men and < 88 cm for women) is recommended for nonhypertensive individuals to prevent hypertension (Grade C) and for hypertensive patients to reduce BP (Grade B). All overweight hypertensive individuals should be advised to lose weight (Grade B).
- 3. Weight loss strategies should use a multidisciplinary approach that includes dietary education, increased physical activity, and behavioural intervention (Grade B).

Table 1. Considerations in the individualization of pharmacological therapy

	Initial Therapy	Second-Line Therapy	Notes and/or Cautions
Hypertension without other compelling	ing indications		_
Diastolic hypertension with or without systolic hypertension	Monotherapy or SPC. Recommended monotherapy choices include thiazide/thiazide-like diuretics (with longer-acting diuretics preferred), β-blockers, ACE inhibitors, ARBs, or long-acting CCB. Recommended SPC choices include combinations of an ACE inhibitor with CCB, ARB with CCB, or ACE inhibitor/ ARB with a diuretic (consider ASA and statins in selected patients)	Further combination of first-line drugs	Not recommended for monotherapy: α blockers, β-blockers in those 60 years of age or older, ACE inhibitors in black people. Hypokalemia should be avoided in those prescribed diuretics. ACE inhibitors, ARBs and direct renin inhibitors are potential teratogens, and caution is required if prescribing to women with child-bearing potential. Combination of an ACE-inhibitor with an ARB is not recommended
Isolated systolic hypertension without other compelling indications	Thiazide/thiazide-like diuretics, ARBs, or long-acting dihydropyridine CCBs	Combinations of first-line drugs	Same as diastolic hypertension with or without systolic hypertension
Diabetes mellitus Diabetes mellitus with microalbuminuria,* renal disease, cardiovascular disease or additional cardiovascular risk factors	ACE inhibitors or ARBs	Combination of a dihydropyridine CCB is preferred over a thiazide/ thiazide-like diuretic	A loop diuretic could be considered in hypertensive chronic kidney disease patients with extracellular fluid volume overload
Diabetes mellitus not included in the above category	ACE inhibitors, ARBs, dihydropyridine CCBs, or thiazide/ thiazide-like diuretics	Combination of first-line drugs. If combination with ACE inhibitor is being considered, a dihydropyridine CCB is preferable to a thiazide/ thiazide-like diuretic	Normal urine micro-ACR < 2.0 mg/Mmol
Cardiovascular disease			
Coronary artery disease	ACE inhibitors or ARBs; β-blockers or CCBs for patients with stable angina	When combination therapy is being used for high-risk patients, an ACE inhibitor/dihydropyridine CCB is preferred	Avoid short-acting nifedipine. Combination of an ACE-inhibitor with an ARB is specifically not recommended. Exercise caution when lowering systolic BP to target if diastolic BP is \leq 60 mm Hg,
Recent myocardial infarction	B-Blockers and ACE inhibitors (ARBs if ACE inhibitor-intolerant)	Long-acting CCBs if β-blocker contraindicated or not effective	especially in patients with LVH Nondihydropyridine CCBs should not be used with concomitant heart failure
Heart failure	hospitalization, acute myocardial infarction, elevated BNP or NT- proBNP level, or NYHA class II-IV	ACE inhibitor and ARB combined. Hydralazine/isosorbide dinitrate combination if ACE inhibitor and ARB contraindicated or not tolerated. Thiazide/thiazide-like or loop diuretics are recommended as additive therapy. Dihydropyridine CCB can also be used	Titrate doses of ACE inhibitors and ARBs to those used in clinical trials. Carefully monitor potassium and renal function if combining any of ACE inhibitor, ARB, and/or aldosterone antagonist
LVH	symptoms ACE inhibitor, ARB, long-acting CCB, or thiazide/thiazide-like diuretics	Combination of additional agents	Hydralazine and minoxidil should not be used
Past stroke or TIA	ACE inhibitor and a thiazide/thiazide- like diuretic combination	Combination of additional agents	Treatment of hypertension should not be routinely undertaken in acute stroke unless extreme BP elevation. Combination of an ACE inhibitor with an ARB is not recommended
Nondiabetic chronic kidney disease Nondiabetic chronic kidney disease with proteinuria [†]	ACE inhibitors (ARBs if ACE inhibitor-intolerant) if there is proteinuria. Diuretics as additive therapy	Combinations of additional agents	Carefully monitor renal function and potassium for those receiving an ACE inhibitor or ARB. Combinations of an ACE inhibitor and ARB are not recommended in patients without proteinuria

Continued

Table 1. Continued.

	Initial Therapy	Second-Line Therapy	Notes and/or Cautions
Renovascular disease	Does not affect initial treatment recommendations. Atherosclerotic renal artery stenosis should be primarily managed medically, whereas revascularization should be considered for renal fibromuscular dysplasia	Combinations of additional agents	Caution with ACE inhibitors or ARB if bilateral renal artery stenosis or unilateral disease with solitary kidney. Renal artery angioplasty and stenting could be considered for patients with renal artery stenosis and complicated, uncontrolled hypertension
Peripheral arterial disease	Does not affect initial treatment recommendations	Combinations of additional agents	Avoid β -blockers with severe disease
Dyslipidemia	Does not affect initial treatment recommendations	Combinations of additional agents	-
Overall vascular protection	Statin therapy for patients with ≥ 3 cardiovascular risk factors or atherosclerotic disease. Low-dose ASA in patients aged 50 years or older. Advise on smoking cessation and use pharmacotherapy for smoking cessation if indicated	_	Caution should be exercised with the ASA recommendation if BP is not controlled

ACE, angiotensin-converting enzyme; ACR, albumin to creatinine ratio; ARB, angiotensin receptor blocker; ASA, acetylsalicylic acid; BNP, B-type natriuretic peptide; BP, blood pressure; CCB, calcium channel blocker; LVH, left ventricular hypertrophy; NT-proBNP, N-terminal pro-BNP; NYHA, New York Heart Association; SPC, single pill combination; TIA, transient ischemic attack.

*Microalbuminuria is defined as persistent albumin to creatinine ratio > 2.0 mg/Mmol.

[†]Proteinuria is defined as urinary protein > 500 mg per 24 hours or ACR > 30 mg/Mmol in 2 of 3 specimens.

C. Alcohol consumption

1. To prevent hypertension and reduce BP in hypertensive adults, individuals should limit alcohol consumption to ≤ 2 drinks per day, and consumption should not exceed 14 standard drinks per week for men and 9 standard drinks per week for women (Grade B). (Note: One standard drink is considered to be the equivalent of 13.6 g or 17.2 mL of ethanol or approximately 44 mL [1.5 oz] of 80 proof [40%] spirits, 355 mL [12 oz] of 5% beer, or 148 mL [5 oz] of 12% wine.)

D. Diet

1. It is recommended that hypertensive patients and normotensive individuals at increased risk of developing hypertension consume a diet that emphasizes fruits, vegetables, low-fat dairy products, whole grain foods rich in dietary fibre, and protein from plant sources that is reduced in saturated fat and cholesterol (Dietary Approaches to Stop Hypertension [DASH] diet;⁴⁹⁻⁵² Supplemental Table S9) (Grade B).

E. Sodium intake

1. To prevent hypertension and reduce BP in hypertensive adults, consider reducing sodium intake toward 2000 mg (5 g of salt or 87 mmol of sodium) per day (Grade A).

F. Calcium and magnesium intake

1. Supplementation of calcium and magnesium is not recommended for the prevention or treatment of hypertension (Grade B).

G. Potassium intake

1. For patients not at risk of hyperkalemia (see Table 2), increase dietary potassium intake to reduce BP (Grade A).

H. Stress management

1. In hypertensive patients in whom stress might be contributing to high BP, stress management should be considered as an intervention (Grade D). Individualized cognitive-behavioural interventions are more likely to be effective when relaxation techniques are used (Grade B).

II. Indications for drug therapy for adults with hypertension without compelling indications for specific agents

Background. Age and frailty distinctions have been removed from our guidelines for the treatment of uncomplicated hypertension. This revision is on the basis of evidence that suggests that older individuals with hypertension benefit from BP reduction irrespective of baseline frailty.^{53,54} In those with a baseline SBP of 140-160 mm Hg, treatment reduces the rate of major adverse cardiovascular events, myocardial infarction, stroke, and mortality, but might also increase the risk of renal dysfunction.⁵³⁻⁵⁶ Caution should be exercised in elderly patients with orthostasis.

In a *post hoc* analysis of the **Hy**pertension in the **V**ery Elderly Trial (HYVET), investigators examined the association between frailty and treatment outcomes in 2656 individuals, aged 80 years and older, and with a baseline SBP \geq 160 mm Hg.⁵³ The benefits of BP reduction were similar irrespective of frailty for the outcomes of stroke, cardiovascular events, and mortality (*P* for interaction = 0.52, 0.73, and 0.61, respectively). Similarly, a prespecified subgroup analysis of 2636 adults 75 years of age and older without history of diabetes, stroke, or baseline orthostasis from the

Table 2. Risk factors for hyperkalemia

Before advising an increase in potassium intake, the following types of patients, who are at high risk of developing hyperkalemia, should be assessed for suitability, and monitored closely:

- Patients receiving renin-angiotensin-aldosterone inhibitors
- Patients receiving other drugs that can cause hyperkalemia (eg, trimethoprim and sulfamethoxazole, amiloride, triamterene)
- Chronic kidney disease (glomerular filtration rate < 60 mL/min/1.73m²)
- Baseline serum potassium > 4.5 Mmol/L

Systolic Blood Pressure Intervention Trial (SPRINT) showed that intensive treatment (SBP target < 120 mm Hg) compared with standard treatment (< 140 mm Hg) resulted in a significant reduction in major adverse cardiovascular events (hazard ratio [HR], 0.66; 95% confidence interval [CI], 0.51-0.85) and mortality (HR, 0.67; 95% CI, 0.49-0.91) over 3.14 years with no detectable difference in outcome benefit with intensive treatment when examined according to baseline frailty.^{54,55} Rates of serious adverse events were not statistically different when examined according to frailty. However, there was a significant increase in renal dysfunction with intensive treatment for those without preexisting kidney disease (HR, 3.14; 95% CI, 1.66-6.37). Individuals with limited life expectancy (ie, < 1year or < 3 years, respectively), dementia, or those needing institutionalized care were ineligible for HYVET or SPRINT.^{53,54} Altogether, these findings are consistent with those from a large meta-analysis of 19 randomized controlled trials (n = 44,989) showing that intensive BP reduction is just as beneficial for the reduction of major cardiovascular events in older adults (62 years of age and older) as it is in those who are younger.⁵⁶

Guidelines

- 1. Antihypertensive therapy should be prescribed for average DBP measurements of $\geq 100 \text{ mm Hg}$ (Grade A) or average SBP measurements of $\geq 160 \text{ mm Hg}$ (Grade A) in patients without macrovascular target organ damage or other cardiovascular risk factors.
- 2. Antihypertensive therapy should be strongly considered for average DPB readings \geq 90 mm Hg (Grade A) or for average SBP readings \geq 140 mm Hg (Grade B for 140-160 mm Hg; Grade A for > 160 mm Hg; revised guideline) in the presence of macrovascular target organ damage or other independent cardiovascular risk factors.

III. Choice of therapy for adults with hypertension without compelling indications for specific agents

A. Indications for drug therapy for adults with diastolic and with or without systolic hypertension

Background. This year, we introduce a number of new and revised guidelines for the initial treatment of hypertension. Although thiazide as well as thiazide-like diuretics remain initial treatment options, preference is now given to the longer-acting, thiazide-like diuretics (eg, chlorthalidone and indapamide). A meta-analysis of 21 randomized controlled

trials showed that the use of thiazide-like diuretics resulted in an additional 12% risk reduction for cardiovascular events (P = 0.049) and 21% risk reduction in heart failure (P =0.023) compared with thiazide diuretics, after adjusting for differences in BP reduction.⁵⁷ Compared with placebo, only thiazide-like diuretics reduced the risk of coronary events and all-cause mortality. In another meta-analysis of 14 randomized controlled trials, the use of indapamide or chlorthalidone resulted in greater SBP reduction compared with hydrochlorothiazide (-5.1 mm Hg; 95% CI, -8.7 to -1.6 mm Hg; and -3.6 mm Hg; 95% CI, -7.3 to 0.0 mm Hg, respectively) without any detectable difference in adverse effects.⁵⁸ Consistent with these findings, a 12-week doubleblind randomized controlled trial of 54 patients showed a greater reduction in mean 24-hour BP compared with baseline with chlorthalidone and extended-release hydrochlorothiazide, but not with conventional, short-acting hydrochlorothiazide.⁵⁹ Collectively, evidence supports the use of longer-acting diuretics for reducing cardiovascular events and BP.

We recommend SPCs as an initial treatment option, on the basis of a global body of evidence, showing their effectiveness in reducing cardiovascular events,^{60,61} improving BP control,⁶⁰⁻⁶⁴ promoting adherence,^{65,66} and reducing medication side effects.⁶⁷ The therapeutic efficacy of combination therapy is well established. A meta-analysis of 42 randomized trials testing the combined use of 2 drugs of different classes compared with doubling the dose of 1 drug showed a 5-fold greater reduction in BP with combination treatment compared with increasing the dose of 1 drug alone.⁶⁸ Further supporting evidence is derived from the Simplified Treatment Intervention to Control Hypertension (STITCH) study, a cluster randomized trial of 45 family practices in Ontario.⁶² A total of 2111 patients with uncontrolled hypertension were assigned to initial fixed-dose combination therapy with an ACE inhibitor or ARB and diuretic vs monotherapy with uptitration as appropriate. After 6 months, there was a larger reduction in BP (-5.2/-2.2 mm Hg) and greater proportion of target BP control (64.7% vs 52.7%; P = 0.03) in those who received initial fixed-dose combination therapy compared with a single agent. Consistent with these findings, observational data also suggest that initial combination treatment compared with monotherapy is associated with a lower likelihood of developing a cardiovascular event, shorter median time to achieve target BP control, and less health care utiliza-tion.^{60,61} Moreover, fixed-dose antihypertensive combinations (ie, SPCs) are reasonable as first-line treatment because most patients require 2 or even 3 antihypertensive agents to reach target BP control in practice.^{55,69-73}

When an SPC is selected, the combination of an ACE inhibitor with a CCB, ARB with a CCB, or ACE inhibitor or ARB with a diuretic is recommended. The most compelling evidence comes from the Avoiding Cardiovascular Events through Combination Therapy in Patients Living with Systolic Hypertension (ACCOMPLISH) trial, which randomized 11,506 adults at high risk for cardiovascular disease to either a combination of benazepril with amlodipine or benazepril with hydrochlorothiazide.⁶³ A reduction in the composite of cardiovascular death and major adverse cardiovascular events was noted with benazepril with amlodipine vs benazepril with

hydrochlorothiazide (HR, 0.80; 95% CI, 0.72-0.90). More recently, the Heart Outcomes Prevention Evaluation (HOPE)-3 trial evaluated 12,705 individuals at intermediate risk of cardiovascular disease and randomized them to receive a fixed-dose combination of candesartan and hydrochlorothiazide or placebo.⁶⁴ Although there were no significant differences in outcomes overall, there appeared to be benefit favouring fixed-dose combination therapy in the subgroup of patients with hypertension. For individuals with a baseline SBP > 143.5 mm Hg, treatment with candesartan and hydrochlorothiazide vs placebo reduced the risk of the first coprimary outcome (a composite of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke; HR, 0.73; 95% CI, 0.56-0.94) and second coprimary outcome (a composite of the first coprimary outcome, plus resuscitated cardiac arrest, heart failure, or revascularization; HR, 0.76; 95% CI, 0.60-0.96). Finally, as discussed previously, STITCH provided additional supporting evidence for the use of an ACE inhibitor with a diuretic or an ARB with a diuretic as initial therapy.⁶³

Guidelines

- 1. Initial therapy should be with either monotherapy or single pill combination (SPC).
 - i. Recommended monotherapy choices are:
 - a. A thiazide/thiazide-like diuretic (Grade A), with longer-acting diuretics preferred (Grade B; new guideline);
 - b. A β -blocker (in patients younger than 60 years; Grade B);
 - c. An ACE inhibitor (in nonblack patients; Grade B);
 - d. An ARB (Grade B); or
 - e. A long-acting calcium channel blocker (CCB; Grade B).
 - ii. Recommended SPC choices are those in which an ACE inhibitor is combined with a CCB (Grade A; new guideline), ARB with a CCB (Grade B; new guideline), or ACE inhibitor or ARB with a diuretic (Grade B; new guideline).
 - iii. Hypokalemia should be avoided in patients treated with thiazide/thiazide-like diuretic monotherapy (Grade C).
- 2. Additional antihypertensive drugs should be used if target BP levels are not achieved with standard-dose monotherapy (Grade B). Add-on drugs should be chosen from first-line choices. Useful choices include a thiazide/thiazide-like diuretic or CCB with either: ACE inhibitor, ARB, or β -blocker (Grade B for the combination of thiazide/thiazide-like diuretic and a dihydropyridine CCB; Grade C for the combination of dihydropyridine CCB and ACE inhibitor; and Grade D for all other combinations). Caution should be exercised in combining a nondihydropyridine CCB and a β -blocker (Grade D). The combination of an ACE inhibitor and an ARB is not recommended (Grade A).

- 3. If BP is still not controlled with a combination of 2 or more first-line agents, or there are adverse effects, other antihypertensive drugs may be added (Grade D).
- 4. Possible reasons for poor response to therapy (Supplemental Table S10) should be considered (Grade D).
- 5. α -Blockers are not recommended as first-line agents for uncomplicated hypertension (Grade A); β -blockers are not recommended as first-line therapy for uncomplicated hypertension in patients 60 years of age or older (Grade A); and ACE inhibitors are not recommended as first-line therapy for uncomplicated hypertension in black patients (Grade A). However, these agents may be used in patients with certain comorbid conditions or in combination therapy.

B. Guidelines for individuals with isolated systolic hypertension

Background. There are no changes to these guidelines for 2017.

Guidelines

- 1. Initial therapy should be single-agent therapy with a thiazide/thiazide-like diuretic (Grade A), a long-acting dihydropyridine CCB (Grade A), or an ARB (Grade B). If there are adverse effects, another drug from this group should be substituted. Hypokalemia should be avoided in patients treated with thiazide/thiazide-like diuretic monotherapy (Grade C).
- 2. Additional antihypertensive drugs should be used if target BP levels are not achieved with standard-dose monotherapy (Grade B). Add-on drugs should be chosen from first-line options (Grade D).
- 3. If BP is still not controlled with a combination of ≥ 2 first-line agents, or there are adverse effects, other classes of drugs (such as α -blockers, ACE inhibitors, centrally acting agents, or nondihydropyridine CCBs) may be combined or substituted (Grade D).
- 4. Possible reasons for poor response to therapy (Supplemental Table S10) should be considered (Grade D).
- 5. α -Blockers are not recommended as first-line agents for uncomplicated isolated systolic hypertension (Grade A); and β -blockers are not recommended as first-line therapy for isolated systolic hypertension in patients aged 60 years or older (Grade A). However, both agents may be used in patients with certain comorbid conditions or in combination therapy.

IV. Global vascular protection therapy for adults with hypertension without compelling indications for specific agents

Background. There are no changes to these guidelines for 2017.

Guidelines

- 1. Statin therapy is recommended in hypertensive patients with ≥ 3 cardiovascular risk factors as defined in Supplemental Table S11 (Grade A in patients older than 40 years) or with established atherosclerotic disease (Grade A regardless of age).
- 2. Consideration should be given to the combination of lowdose acetylsalicylic acid therapy in hypertensive patients 50 years of age or older (Grade B). Caution should be exercised if BP is not controlled (Grade C).
- Tobacco use status of all patients should be updated on a regular basis and health care providers should clearly advise patients to quit smoking (Grade C).
- 4. Advice in combination with pharmacotherapy (eg, varenicline, bupropion, nicotine replacement therapy) should be offered to all smokers with a goal of smoking cessation (Grade C).
- 5. For high-risk patients (Table 3),⁷⁴ aged 50 years or older, with SBP levels ≥ 130 mm Hg, intensive management to target a SBP of ≤ 120 mm Hg should be considered. Intensive management should be guided by AOBP measurements (see Hypertension Canada's 2017 Guidelines: Diagnosis and Assessment of Hypertension, section I. Accurate Measurement of BP, and Supplemental Table S2, section on Recommended Technique for Automated Office Blood Pressure [AOBP]). Patient selection for intensive management is recommended and caution should be taken in certain high-risk groups (Table 4; Grade B).

V. Goals of therapy for adults with hypertension without compelling indications for specific agents

Background. Consistent with the changes made to section *II. Indications for Drug Therapy for Adults With Hypertension Without Compelling Indications for Specific Agents*, we have removed the previous guideline for different BP goals for the elderly. Evidence suggests that older patients with hypertension similarly benefit from intensive BP reduction as younger adults.⁵³⁻⁵⁶

Table 3. Clinical indications defining high-risk patients as candidates for intensive management

Clinical or subclinical cardiovascular disease

or Chronic kidney disease (nondiabetic nephropathy, proteinuria < 1 g/d, estimated glomerular filtration rate 20-59 mL/min/1.73m²*)

or † Estimated 10-year global cardiovascular risk $\geq 15\%$

or Age 75 years or older

Patients with ≥1 clinical indication should consent to intensive management

[†]Framingham Risk Score.⁷

Table 4. Generalizability of intensive blood pressure-lowering: cautions and contraindications

Limited or no evidence		
Heart failure (ejection fraction < 35%) or recent myocardial infarction		
(within past 3 months)		
Indication for, but not currently receiving, a β -blocker		
Institutionalized elderly patient		
Inconclusive evidence		
Diabetes mellitus		
Previous stroke		
$eGFR < 20 mL/min/1.73 m^2$		
Contraindications		
Patient unwilling or unable to adhere to multiple medications		
Standing SBP < 110 mm Hg		
Inability to measure SBP accurately		
Known secondary cause(s) of hypertension		

eGFR, estimated glomerular filtration rate; SBP, systolic blood pressure.

Guidelines

1. The SBP treatment goal is a pressure level of < 140 mm Hg (Grade C). The DBP treatment goal is a pressure level of < 90 mm Hg (Grade A).

VI. Treatment of hypertension in association with ischemic heart disease

A. Guidelines for hypertensive patients with CAD

Background. *Post hoc* analyses of several large clinical trials in patients with CAD suggest the possible existence of a J-curve, whereby reducing BP below a specific nadir might be associated with an increased risk of coronary events.^{30,75-77} This might be of greatest concern in individuals with LVH because of increased myocardial demand and decreased coronary perfusion during diastole.

In a retrospective cohort of 92 patients with CAD, there was reduced coronary blood flow with increasing left ventricular mass, even after adjustment.⁷⁸ This association was present for all levels of DBP, but was most pronounced for those with a DBP < 70 mm Hg. These findings are consistent with and extend those from a systematic review of 8 studies (n = 362), which reported an inverse association between coronary blood flow and left ventricular mass, especially in those with hypertension.⁷⁹

Nevertheless, it should be acknowledged that for most high-risk individuals, BP reduction is well tolerated and beneficial. As such, although we advise exercising caution when lowering BP, antihypertensive therapy is still strongly recommended for individuals with hypertension who tolerate antihypertensive treatment, especially for patients with moderate or severely increased SBP.

Guidelines

1. For most hypertensive patients with CAD, an ACE inhibitor or ARB is recommended (Grade A).

MDRD, Modification of Diet in Renal Disease.

^{*} Four-variable MDRD equation.

- 2. For hypertensive patients with CAD, but without coexisting systolic heart failure, the combination of an ACE inhibitor and ARB is not recommended (Grade B).
- 3. For high-risk hypertensive patients, when combination therapy is being used, choices should be individualized. The combination of an ACE inhibitor and a dihydropyridine CCB is preferable to an ACE inhibitor and a thiazide/thiazide-like diuretic in selected patients (Grade A).
- 4. For patients with stable angina pectoris but without previous heart failure, myocardial infarction, or coronary artery bypass surgery, either a β -blocker or CCB can be used as initial therapy (Grade B).
- 5. Short-acting nifedipine should not be used (Grade D).
- 6. When decreasing SBP to target levels in patients with established CAD (especially if isolated systolic hypertension is present), be cautious when the DBP is ≤ 60 mm Hg because of concerns that myocardial ischemia might be exacerbated, especially in patients with LVH (Grade D; revised guideline).

B. Guidelines for patients with hypertension who have had a recent myocardial infarction

Background. There are no changes to these guidelines for 2017.

Guidelines

- 1. Initial therapy should include a β -blocker as well as an ACE inhibitor (Grade A).
- 2. An ARB can be used if the patient is intolerant of an ACE inhibitor (Grade A in patients with left ventricular systolic dysfunction).
- CCBs may be used in patients after myocardial infarction when β-blockers are contraindicated or not effective. Nondihydropyridine CCBs should not be used when there is heart failure, evidenced by pulmonary congestion on examination or radiography (Grade D).

VII. Treatment of hypertension in association with heart failure

Background. There are no changes to these guidelines for 2017.

Guidelines

1. In patients with systolic dysfunction (ejection fraction < 40%), ACE inhibitors (Grade A) and β -blockers (Grade A) are recommended for initial therapy. Aldosterone antagonists (mineralocorticoid receptor antagonists) may be combined in treatment for patients with a recent cardiovascular hospitalization, acute myocardial infarction, elevated B-type natriuretic peptide or N-terminal pro-B-type natriuretic peptide level, or New York Heart Association Class II-IV symptoms

(Grade A). Careful monitoring for hyperkalemia is recommended when combining an aldosterone antagonist with ACE inhibitor or ARB treatment. Other diuretics are recommended as additional therapy if needed (Grade B for thiazide/thiazide-like diuretics for BP control, Grade D for loop diuretics for volume control). Beyond considerations of BP control, doses of ACE inhibitors or ARBs should be titrated to those reported to be effective in trials unless adverse effects become manifest (Grade B).

- 2. An ARB is recommended if ACE inhibitors are not tolerated (Grade A).
- 3. A combination of hydralazine and isosorbide dinitrate is recommended if ACE inhibitors and ARBs are contraindicated or not tolerated (Grade B).
- 4. For hypertensive patients whose BP is not controlled, an ARB may be combined with an ACE inhibitor and other antihypertensive drug treatment (Grade A). Careful monitoring should be used if combining an ACE inhibitor and an ARB because of potential adverse effects such as hypotension, hyperkalemia, and worsening renal function (Grade C). Additional therapies may also include dihydropyridine CCBs (Grade C).

VIII. Treatment of hypertension in association with stroke

Background. BP is often elevated after ICH. In recent years, several trials have studied the effect of BP-lowering in the context of ICH. The Intensive Blood Pressure in Acute Cerebral Hemorrhage Reduction Trial (INTERACT)-2 enrolled 2839 patients within 6 hours of spontaneous ICH, and compared the SBP targets of < 140mm Hg vs < 180 mm Hg.⁸⁰ Targets were applied within the first hour of presentation and maintained for 7 days. No statistical difference was observed between the 2 strategies for the primary outcome, a composite of death or stroke-related disability at 90 days (52.0% vs 55.6% for intensive compared with standard treatment, respectively; odds ratio, 0.87; 95% CI, 0.75-1.01). In the Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH)-2 trial, 1000 patients who presented within 4.5 hours of spontaneous ICH were randomly assigned to SBP targets of 110-139 mm Hg vs 140-179 mm Hg for the first 24 hours.⁸¹ The primary outcome was the same as in INTERACT-2. There was no difference between the 2 treatment strategies for the main outcome, and the trial was terminated early because of futility. In addition, there was a trend toward more adverse events in the lower SBP target arm. Considered together, these 2 important trials showed no measurable benefit to lowering SBP < 140 mm Hg inthe acute period after spontaneous ICH. There is no trial evidence to delineate an appropriate SBP target, if any, >140 mm Hg. All trials to date have followed the convention in limiting SBP increases beyond 180 mm Hg in their control arms.

Guidelines

A. BP management in acute ischemic stroke (onset to 72 hours)

- 1. For patients with ischemic stroke not eligible for thrombolytic therapy, treatment of hypertension in the setting of acute ischemic stroke or transient ischemic attack should not be routinely undertaken (Grade D). Extreme BP increases (eg, SBP > 220 mm Hg or DBP > 120 mm Hg) may be treated to reduce the BP by approximately 15% (Grade D), and not more than 25%, over the first 24 hours with gradual reduction thereafter (Grade D). Avoid excessive lowering of BP because this might exacerbate existing ischemia or might induce ischemia, particularly in the setting of intracranial arterial occlusion or extracranial carotid or vertebral artery occlusion (Grade D). Pharmacological agents and routes of administration should be chosen to avoid precipitous decreases in BP (Grade D).
- 2. For patients with ischemic stroke eligible for thrombolytic therapy, very high BP (> 185/110 mm Hg) should be treated concurrently in patients receiving thrombolytic therapy for acute ischemic stroke to reduce the risk of secondary intracranial hemorrhage (Grade B).

B. BP management after acute ischemic stroke

- 1. Strong consideration should be given to the initiation of antihypertensive therapy after the acute phase of a stroke or transient ischemic attack (Grade A).
- 2. After the acute phase of a stroke, BP-lowering treatment is recommended to a target of consistently < 140/90 mm Hg (Grade C).
- 3. Treatment with an ACE inhibitor and thiazide/thiazidelike diuretic combination is preferred (Grade B).
- 4. For patients with stroke, the combination of an ACE inhibitor and ARB is not recommended (Grade B).

C. BP management in hemorrhagic stroke (onset to 72 hours)

1. For patients with intracerebral hemorrhage (ICH) in the hyperacute phase (in the first 24 hours) SBP lowering to < 140 mm Hg should be avoided because of an absence of benefit (relative to a target of < 180 mm Hg; Grade A; **new guideline**) and some suggestion of harm.

IX. Treatment of hypertension in association with LVH

Background. There are no changes to these guidelines for 2017.

Guidelines

- 1. Hypertensive patients with LVH should be treated with antihypertensive therapy to decrease the rate of subsequent cardiovascular events (Grade C).
- 2. The choice of initial therapy can be influenced by the presence of LVH (Grade D). Initial therapy can be drug

treatment using ACE inhibitors, ARBs, long-acting CCBs, or thiazide/thiazide-like diuretics. Direct arterial vasodilators such as hydralazine or minoxidil should not be used.

X. Treatment of hypertension in association with nondiabetic chronic kidney disease

Background. There are no changes to these guidelines for 2017.

Guidelines

- 1. For patients with nondiabetic chronic kidney disease, target BP is < 140/90 mm Hg (Grade B).
- 2. For patients with hypertension and proteinuric chronic kidney disease (urinary protein > 500 mg per 24 hours or albumin to creatinine ratio > 30 mg/Mmol), initial therapy should be an ACE inhibitor (Grade A) or an ARB if there is intolerance to ACE inhibitors (Grade B).
- 3. Thiazide/thiazide-like diuretics are recommended as additive antihypertensive therapy (Grade D). For patients with chronic kidney disease and volume overload, loop diuretics are an alternative (Grade D).
- 4. In most cases, combination therapy with other antihypertensive agents might be needed to reach target BP levels (Grade D).
- 5. The combination of an ACE inhibitor and ARB is not recommended for patients with nonproteinuric chronic kidney disease (Grade B).

XI. Treatment of hypertension in association with renovascular disease

Background. Accompanying our guidelines for the assessment of renal FMD (see *Hypertension Canada's 2017 Guidelines: Diagnosis and Assessment of Hypertension*, section *VII. Assessment for Renovascular Hypertension*), we introduce 3 new guidelines for the treatment of this condition. Evidence guiding treatment is primarily on the basis of small case series and case reports. Treatment decisions should be individualized and take into consideration the nature and location of the vascular lesions, severity of symptoms, previous vascular events, and comorbid conditions.⁴¹ Because of the complexity in care, consultation with a hypertension expert is advised.

Hypertension arising from renal FMD is primarily mediated by the renin-angiotensin-aldosterone system. Medical therapy should be directed toward BP control and vascular risk reduction. Revascularization should be considered for individuals with elevated BP, particularly for those with recent-onset or resistant hypertension. Highest cure rates are associated with younger age and shorter duration of hypertension.^{82,83} Although there are no data to inform the most appropriate initial revascularization strategy, percutaneous renal transluminal angioplasty is usually preferred over surgery because it is less costly, less invasive, has a lower morbidity, and can be performed on an outpatient basis.^{41,44} It is associated with a combined rate of cure or BP improvement of 86.4%.^{44,83} Stenting is not routinely recommended for FMD because the risk of restenosis is generally believed to be low,⁴⁴ but might be considered for lesions for which angioplasty fails or those associated with flow-limiting dissection. It is reasonable to consider surgery for complex lesions less amendable to angioplasty, stenosis associated with complex aneurysm, and restenosis despite 2 unsuccessful attempts of angioplasty.^{41,44}

Guidelines

- 1. Patients with hypertension attributable to atherosclerotic renal artery stenosis should be primarily medically managed because renal angioplasty and stenting offers no benefit over optimal medical therapy alone (Grade B).
- 2. Renal artery angioplasty and stenting for atherosclerotic hemodynamically significant renal artery stenosis could be considered for patients with uncontrolled hypertension resistant to maximally tolerated pharmacotherapy, progressive renal function loss, and acute pulmonary edema (Grade D).
- 3. Patients with confirmed renal FMD should be referred to a hypertension specialist (Grade D; **new guideline**).
- 4. In patients with hypertension attributable to FMD-related renal artery stenosis, revascularization should be considered (Grade D; **new guideline**).
- 5. Renal artery angioplasty without stenting is recommended for treatment of FMD-related renal artery stenosis. Stenting is not recommended unless needed because of a periprocedural dissection. Surgical revascularization should be considered in cases of complex lesions less amendable to angioplasty, stenosis associated with complex aneurysm, and restenosis despite 2 unsuccessful attempts of angioplasty (Grade D; **new guideline**).

XII. Treatment of hypertension in association with diabetes mellitus

Background. There are no changes to these guidelines for 2017.

Guidelines

- 1. Persons with diabetes mellitus should be treated to attain SBP of < 130 mm Hg (Grade C) and DBP of < 80 mm Hg (Grade A; these target BP levels are the same as the BP treatment thresholds). Combination therapy using 2 first-line agents may also be considered as initial treatment of hypertension (Grade B) if SBP is 20 mm Hg greater than target or if DBP is 10 mm Hg greater than target. However, caution should be exercised in patients in whom a substantial decrease in BP is more likely or poorly tolerated (eg, elderly patients and patients with autonomic neuropathy).
- 2. For persons with cardiovascular or kidney disease, including microalbuminuria, or with cardiovascular risk

factors in addition to diabetes and hypertension, an ACE inhibitor or an ARB is recommended as initial therapy (Grade A).

- 3. For persons with diabetes and hypertension not included in other guidelines in this section, appropriate choices include (in alphabetical order): ACE inhibitors (Grade A), ARBs (Grade B), dihydropyridine CCBs (Grade A), and thiazide/ thiazide-like diuretics (Grade A).
- 4. If target BP levels are not achieved with standard-dose monotherapy, additional antihypertensive therapy should be used. For persons in whom combination therapy with an ACE inhibitor is being considered, a dihydropyridine CCB is preferable to a thiazide/thiazide-like diuretic (Grade A).

XIII. Adherence strategies for patients

Background. There are no changes to this guideline for 2017.

Guidelines

1. Adherence to an antihypertensive prescription can be improved by a multipronged approach (Supplemental Table S12).

XIV. Treatment of secondary hypertension due to endocrine causes

Background. There are no changes to this guideline for 2017.

Guidelines

1. Treatment of hyperaldosteronism and pheochromocytoma are outlined in Supplemental Tables S7 and S8, respectively.

XV. Treatment of resistant hypertension

Background. Resistant hypertension—defined by uncontrolled BP despite the use of ≥ 3 antihypertensive agents of different classes including a diuretic, or controlled BP with ≥ 4 agents—is present in 10%-20% of individuals treated for hypertension.⁸⁴⁻⁸⁷ Accordingly, the HCGC has identified resistant hypertension as an area of importance needing to be explicitly addressed in our guidelines. A decision was made to assemble a dedicated subgroup committee to conduct a comprehensive literature review and to develop specific guidelines in the coming years.

Preliminary discussion was held regarding the Prevention And Treatment of Hypertension With Algorithmbased therapy number 2 (PATHWAY-2) trial, which enrolled 335 individuals with uncontrolled hypertension and were receiving 3 drugs, and compared spironolactone, doxazosin, bisoprolol, or placebo as add-on therapy.⁸⁸ Spironolactone was most effective in lowering SBP. After 3 months, 58% of patients treated with spironolactone achieved target BP control vs 42% treated with doxazosin and 43% treated with bisoprolol. Although noteworthy, the committee decided not to generate any formal guidelines on the basis of PATHWAY-2 alone at this time, because of the lack of event-related outcomes. Consistent with our overall guidelines process, studies that assessed cardiovas-cular morbidity and mortality, as well as total mortality are prioritized for establishing guidelines related to pharmacotherapy.

Implementation

Implementation and dissemination of the guidelines is a priority for Hypertension Canada. We use many strategies to reach out to a variety of providers who care for patients with hypertension. Our efforts include knowledge exchange forums, targeted educational materials for primary care providers and patients, "Train the Trainer" teaching sessions, as well as slide kits and summary documents, which are freely available online in French and English (www.hypertension. ca). Hypertension Canada receives feedback from end users to continually improve guideline processes and content. The Research and Evaluation Committee conducts hypertension surveillance studies and reviews existing Canadian health surveys to identify gaps between current and best practices.

Acknowledgements

We thank Ms Susan Carter for providing technical assistance with the manuscript and administrative support.

Funding Sources

Activities of the HCGC are supported by Hypertension Canada. The members of the HCGC are unpaid volunteers who contribute their time and expertise to the annual development and dissemination of the Hypertension Canada guidelines. To maintain professional credibility of the content, the process for the development of the guidelines is fully independent and free from external influence. External partners assist with the dissemination of the approved guidelines.

Disclosures

Please see Supplemental Appendix S2 for a complete list of disclosures.

References

- Padwal RS, Bienek A, McAlister FA, Campbell NR. Outcomes Research Task Force of the Canadian Hypertension Education Program. Epidemiology of hypertension in Canada: an update. Can J Cardiol 2016;32: 687-94.
- Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA 1996;275:1571-6.
- **3.** Yusuf S, Hawkins S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004;364:937-52.
- 4. Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor

clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2224-60.

- Chow CK, Teo KK, Rangarajan S, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013;310:959-68.
- 6. Feldman RD, Campbell N, Larochelle P, et al. 1999 Canadian recommendations for the management of hypertension. Task Force for the Development of the 1999 Canadian Recommendations for the Management of Hypertension. CMAJ 1999;161(suppl 12):S1-17.
- McAlister FA, Wilkins K, Joffres M, et al. Changes in the rates of awareness, treatment and control of hypertension in Canada over the past two decades. CMAJ 2011;183:1007-13.
- Zarnke KB, Levine M, McAlister FA, et al. The 2000 Canadian recommendations for the management of hypertension: part two-diagnosis and assessment of people with high blood pressure. Can J Cardiol 2001;17:1249-63.
- Zarnke KB, McAlister FA, Campbell NR, et al. The 2001 Canadian recommendations for the management of hypertension: part one– assessment for diagnosis, cardiovascular risk, causes and lifestyle modification. Can J Cardiol 2002;18:604-24.
- McAlister FA, Zarnke KB, Campbell NR, et al. The 2001 Canadian recommendations for the management of hypertension: part two-therapy. Can J Cardiol 2002;18:625-41.
- Canadian Hypertension Education Program. The Canadian recommendations for the management of hypertension. Can Pharm J 2003;136:45-52.
- 12. Hemmelgarn BR, Zarnke KB, Campbell NR, et al. The 2004 Canadian Hypertension Education Program recommendations for the management of hypertension: part i-blood pressure measurement, diagnosis and assessment of risk. Can J Cardiol 2004;20:31-40.
- Khan NA, McAlister FA, Campbell NR, et al. The 2004 Canadian recommendations for the management of hypertension: part II—therapy. Can J Cardiol 2004;20:41-54.
- 14. Touyz RM, Campbell N, Logan A, et al. The 2004 Canadian recommendations for the management of hypertension: part III—lifestyle modifications to prevent and control hypertension. Can J Cardiol 2004;20:55-9.
- 15. Hemmelgarn BR, McAllister FA, Myers MG, et al. The 2005 Canadian Hypertension Education Program recommendations for the management of hypertension: part 1- blood pressure measurement, diagnosis and assessment of risk. Can J Cardiol 2005;21:645-56.
- 16. Khan NA, McAlister FA, Lewanczuk RZ, et al. The 2005 Canadian Hypertension Education Program recommendations for the management of hypertension: part II - therapy. Can J Cardiol 2005;21: 657-72.
- Hemmelgarn BR, McAlister FA, Grover S, et al. The 2006 Canadian Hypertension Education Program recommendations for the management of hypertension: part I-blood pressure measurement, diagnosis and assessment of risk. Can J Cardiol 2006;22:573-81.
- Khan NA, McAlister FA, Rabkin SW, et al. The 2006 Canadian Hypertension Education Program recommendations for the management of hypertension: part II - therapy. Can J Cardiol 2006;22:583-93.
- 19. Padwal RS, Hemmelgarn BR, McAlister FA, et al. The 2007 Canadian Hypertension Education Program recommendations for the management of hypertension: part 1- blood pressure measurement, diagnosis and assessment of risk. Can J Cardiol 2007;23:529-38.

- 20. Khan NA, Hemmelgarn B, Padwal R, et al. The 2007 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2-therapy. Can J Cardiol 2007;23:539-50.
- Padwal RS, Hemmelgarn BR, Khan NA, et al. The 2008 Canadian Hypertension Education Program recommendations for the management of hypertension: part 1-blood pressure measurement, diagnosis and assessment of risk. Can J Cardiol 2008;24:455-63.
- 22. Khan NA, Hemmelgarn B, Herman RJ, et al. The 2008 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2-therapy. Can J Cardiol 2008;24: 465-75.
- 23. Padwal RS, Hemmelgarn BR, Khan NA, et al. The 2009 Canadian Hypertension Education Program recommendations for the management of hypertension: part 1-blood pressure measurement, diagnosis and assessment of risk. Can J Cardiol 2009;25:279-86.
- 24. Khan NA, Hemmelgarn B, Herman RJ, et al. The 2009 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2-therapy. Can J Cardiol 2009;25: 287-98.
- 25. Quinn RR, Hemmelgarn BR, Padwal RS, et al. The 2010 Canadian Hypertension Education Program recommendations for the management of hypertension: part I blood pressure measurement, diagnosis and assessment of risk. Can J Cardiol 2010;26:241-8.
- Hackam DG, Khan NA, Hemmelgarn BR, et al. The 2010 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2-therapy. Can J Cardiol 2010;26:249-58.
- 27. Rabi DM, Daskalopoulou SS, Padwal RS, et al. The 2011 Canadian Hypertension Education Program recommendations for the management of hypertension: blood pressure measurement, diagnosis, assessment of risk, and therapy. Can J Cardiol 2011;27:415-33.
- 28. Daskalopoulou SS, Khan NA, Quinn RR, et al. The 2012 Canadian Hypertension Education Program recommendations for the management of hypertension: blood pressure measurement, diagnosis, assessment of risk, and therapy. Can J Cardiol 2012;28:270-87.
- 29. Hackam DG, Quinn RR, Ravani P, et al. The 2013 Canadian Hypertension Education Program recommendations for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol 2013;29:528-42.
- 30. Dasgupta K, Quinn RR, Zarnke KB, et al. The 2014 Canadian Hypertension Education Program recommendations for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol 2014;30:485-501.
- Daskalopoulou SS, Rabi DM, Zarnke KB, et al. The 2015 Canadian Hypertension Education Program recommendations for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol 2015;31:549-68.
- 32. Leung AA, Nerenberg K, Daskalopoulou SS, et al. Hypertension Canada's 2016 Canadian Hypertension Education Program Guidelines for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol 2016;32:569-88.
- McAlister FA. The Canadian Hypertension Education Program—a unique Canadian initiative. Can J Cardiol 2006;22:559-64.
- Brouwers MC, Kho ME, Browman GP, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ 2010;182:E839-42.
- **35.** Andreoni KA, Weeks SM, Gerber DA, et al. Incidence of donor renal fibromuscular dysplasia: does it justify routine angiography? Transplantation 2002;73:1112-6.

- Blondin D, Lanzman R, Schellhammer F, et al. Fibromuscular dysplasia in living renal donors: still a challenge to computed tomographic angiography. Eur J Radiol 2010;75:67-71.
- Cragg AH, Smith TP, Thompson BH, et al. Incidental fibromuscular dysplasia in potential renal donors: long-term clinical follow-up. Radiology 1989;172:145-7.
- Neymark E, LaBerge JM, Hirose R, et al. Arteriographic detection of renovascular disease in potential renal donors: incidence and effect on donor surgery. Radiology 2000;214:755-60.
- Plouin PF, Perdu J, La Batide-Alanore A, et al. Fibromuscular dysplasia. Orphanet J Rare Dis 2007;2:28.
- Spring DB, Salvatierra O Jr, Palubinskas AJ, et al. Results and significance of angiography in potential kidney donors. Radiology 1979;133:45-7.
- Slovut DP, Olin JW. Fibromuscular dysplasia. N Engl J Med 2004;350: 1862-71.
- 42. Olin JW, Froehlich J, Gu X, et al. The United States Registry for Fibromuscular Dysplasia: results in the first 447 patients. Circulation 2012;125:3182-90.
- 43. Mettinger KL. Fibromuscular dysplasia and the brain. II. Current concept of the disease. Stroke 1982;13:53-8.
- 44. Olin JW, Gornik HL, Bacharach JM, et al. Fibromuscular dysplasia: state of the science and critical unanswered questions: a scientific statement from the American Heart Association. Circulation 2014;129:1048-78.
- 45. Olin JW, Piedmonte MR, Young JR, et al. The utility of duplex ultrasound scanning of the renal arteries for diagnosing significant renal artery stenosis. Ann Intern Med 1995;122:833-8.
- Riehl J, Schmitt H, Bongartz D, Bergmann D, Sieberth HG. Renal artery stenosis: evaluation with colour duplex ultrasonography. Nephrol Dial Transplant 1997;12:1608-14.
- Textor SC. Pitfalls in imaging for renal artery stenosis. Ann Intern Med 2004;141:730-1.
- Vasbinder GB, Nelemans PJ, Kessels AG, et al. Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med 2004;141:674-82 [discussion: 682].
- 49. Sacks F, Svetkey L, Vollmer W, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. N Engl J Med 2001;344:3-10.
- 50. Moore TJ, Vollmer WM, Appel LJ, et al. Effect of dietary patterns on ambulatory blood pressure: results from the Dietary Approaches to Stop Hypertension (DASH) trial. DASH Collaborative Research Group. Hypertension 1999;34:472-7.
- Karanja NM, Obarzanek E, Lin PH, et al. Descriptive characteristics of the dietary patterns used in the Dietary Approaches to Stop Hypertension trial. DASH Collaborative Research Group. J Am Diet Assoc 1999;99:S19-27.
- Appel L, Moore T, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med 1997;336:1117-24.
- 53. Warwick J, Falaschetti E, Rockwood K, et al. No evidence that frailty modifies the positive impact of antihypertensive treatment in very elderly people: an investigation of the impact of frailty upon treatment effect in the HYpertension in the Very Elderly Trial (HYVET) study, a double-blind, placebo-controlled study of antihypertensives in people with hypertension aged 80 and over. BMC Med 2015;13:78.

Leung et al. 2017 Hypertension Canada Guidelines for Adults

- 54. Williamson JD, Supiano MA, Applegate WB, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged >/=75 years: a randomized clinical trial. JAMA 2016;315:2673-82.
- Wright JT Jr, Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood pressure control. N Engl J Med 2015;373:2103-16.
- 56. Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet 2016;387:435-43.
- Olde Engberink RH, Frenkel WJ, van den Bogaard B, et al. Effects of thiazide-type and thiazide-like diuretics on cardiovascular events and mortality: systematic review and meta-analysis. Hypertension 2015;65: 1033-40.
- Roush GC, Ernst ME, Kostis JB, Tandon S, Sica DA. Head-to-head comparisons of hydrochlorothiazide with indapamide and chlorthalidone: antihypertensive and metabolic effects. Hypertension 2015;65: 1041-6.
- Pareek AK, Messerli FH, Chandurkar NB, et al. Efficacy of low-dose chlorthalidone and hydrochlorothiazide as assessed by 24-h ambulatory blood pressure monitoring. J Am Coll Cardiol 2016;67:379-89.
- **60**. Corrao G, Nicotra F, Parodi A, et al. Cardiovascular protection by initial and subsequent combination of antihypertensive drugs in daily life practice. Hypertension 2011;58:566-72.
- 61. Gradman AH, Parise H, Lefebvre P, et al. Initial combination therapy reduces the risk of cardiovascular events in hypertensive patients: a matched cohort study. Hypertension 2013;61:309-18.
- Feldman RD, Zou GY, Vandervoort MK, et al. A simplified approach to the treatment of uncomplicated hypertension: a cluster randomized, controlled trial. Hypertension 2009;53:646-53.
- Jamerson K, Weber MA, Bakris GL, et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med 2008;359:2417-28.
- 64. Lonn EM, Bosch J, Lopez-Jaramillo P, et al. Blood-pressure lowering in intermediate-risk persons without cardiovascular disease. N Engl J Med 2016;374:2009-20.
- 65. Sherrill B, Halpern M, Khan S, Zhang J, Panjabi S. Single-pill vs freeequivalent combination therapies for hypertension: a meta-analysis of health care costs and adherence. J Clin Hypertens (Greenwich) 2011;13: 898-909.
- 66. Taylor AA, Shoheiber O. Adherence to antihypertensive therapy with fixed-dose amlodipine besylate/benazepril HCl versus comparable component-based therapy. Congest Heart Fail 2003;9:324-32.
- 67. Law MR, Wald NJ, Morris JK, Jordan RE. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. BMJ 2003;326:1427.
- 68. Wald DS, Law M, Morris JK, Bestwick JP, Wald NJ. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am J Med 2009;122:290-300.
- 69. Cushman WC, Ford CE, Cutler JA, et al. Success and predictors of blood pressure control in diverse North American settings: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). J Clin Hypertens (Greenwich) 2002;4:393-404.
- 70. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic. The

antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT) [errata in: 2004;291:2196, 2003;289:178]. JAMA 2002;288:2981-97.

- Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet 1998;351: 1755-62.
- 72. Julius S, Kjeldsen SE, Weber M, et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet 2004;363: 2022-31.
- 73. Dahlof B, Sever PS, Poulter NR, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet 2005;366:895-906.
- 74. D'Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008;117:743-53.
- Bangalore S, Messerli FH, Wun CC, et al. J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) Trial. Eur Heart J 2010;31:2897-908.
- 76. Bangalore S, Qin J, Sloan S, Murphy SA, Cannon CP. What is the optimal blood pressure in patients after acute coronary syndromes?: Relationship of blood pressure and cardiovascular events in the PRavastatin OR atorVastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction (PROVE IT-TIMI) 22 trial. Circulation 2010;122:2142-51.
- Messerli FH, Mancia G, Conti CR, et al. Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous? Ann Intern Med 2006;144:884-93.
- Rabkin SW, Shiekh IA, Wood DA. The impact of left ventricular mass on diastolic blood pressure targets for patients with coronary artery disease. Am J Hypertens 2016;29:1085-93.
- Rabkin SW. Considerations in understanding the coronary blood flowleft ventricular mass relationship in patients with hypertension. Curr Cardiol Rev 2017;13:75-83.
- Anderson CS, Heeley E, Huang Y, et al. Rapid blood pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med 2013;368:2355-65.
- Qureshi AI, Palesch YY, Barsan WG, et al. Intensive blood pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med 2016;375:1033-43.
- Davies MG, Saad WE, Peden EK, et al. The long-term outcomes of percutaneous therapy for renal artery fibromuscular dysplasia. J Vasc Surg 2008;48:865-71.
- Trinquart L, Mounier-Vehier C, Sapoval M, Gagnon N, Plouin PF. Efficacy of revascularization for renal artery stenosis caused by fibromuscular dysplasia: a systematic review and meta-analysis. Hypertension 2010;56:525-32.
- 84. Calhoun DA, Jones D, Textor S, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation 2008;117:e510-26.
- 85. de la Sierra A, Segura J, Banegas JR, et al. Clinical features of 8295 patients with resistant hypertension classified on the basis of

ambulatory blood pressure monitoring. Hypertension 2011;57: 898-902.

- **86.** Roberie DR, Elliott WJ. What is the prevalence of resistant hypertension in the United States? Curr Opin Cardiol 2012;27:386-91.
- **87.** Sim JJ, Bhandari SK, Shi J, et al. Characteristics of resistant hypertension in a large, ethnically diverse hypertension population of an integrated health system. Mayo Clin Proc 2013;88:1099-107.
- 88. Williams B, MacDonald TM, Morant S, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment

for drug-resistant hypertension (PATHWAY-2): a randomised, doubleblind, crossover trial. Lancet 2015;386:2059-68.

Supplementary Material

To access the supplementary material accompanying this article, visit the online version of the *Canadian Journal of Cardiology* at www.onlinecjc.ca and at http://dx.doi.org/10. 1016/j.cjca.2017.03.005.